Core J Extraction and Analysis of Cellular Sterol Lipids

11.09.2006

By: E. McCrum, J. McDonald, B. Thompson

Synopsis: This protocol describes the standard method for the extraction and analysis of sterols following a LIPID MAPS time course protocol. Cells should be grown and treated according to a LIPID MAPS protocol. Sterols are extracted via a modified Bligh-Dyer method and separated using a reverse phase binary liquid chromatography (LC) gradient. Sterols are quantitated using a MRM method with positive electrospray ionization mass spectrometry (ESI-MS) and normalized to DNA.

I. Extraction of Sterol Lipids

The extraction protocol outlined below is for cells grown in 60 or 100mm dishes suspended in 2 mL of DPBS. After extraction and quantification of lipids, sterols are normalized to mass of DNA.

Reagents Required:

Chloroform DPBS EDTA High purity water MeOH

A. Lipid Extraction from Medium

B. Cell Harvest and Lipid Extraction

- Remove medium to a 15 mL conical tube. Centrifuge at 2400 rpm for 10 min (eppendorf 5810 R with swinging bucket rotor). Transfer supernatant to a new tube and add 10 μL of each surrogate mix. Store at -80°C until extraction and analysis.
- 2. After washing cells twice with 3 mL DPBS, add 2 mL DPBS/1mM EDTA and scrape cells loose from dish surface.
- 3. Transfer the cells to a 15 mL polypropylene conical tube. Pipette 20 times to suspend cells.
- 4. Transfer 400 μ L to a 1.5 mL eppendorf tube for DNA assay. To these, add 20 μ L 50% EtOH in H₂O. Store at -80°C until assay.
- 5. To the remaining 1.6 mL cells, add 6 mL CHCl₃/MeOH (1:2 v:v).
- 6. Add 10 μL of each surrogate mix. Make note of the concentrations of these standards. Vortex well.
- 7. Centrifuge at 2400 rpm for 5 minutes (eppendorf 5810 R with swinging bucket rotor).
- 8. Decant supernatant into a fresh 15 mL polypropylene conical tube. Discard pellet.
- 9. To the supernatant, add 2 mL each of CHCl₃ and DPBS. Vortex well.
- 10. Centrifuge at 2400 rpm for 5 minutes.
- 11. Remove organic (lower) phase to a fresh 4 mL glass vial with Teflon-lined cap using a 9 inch Pasteur pipette.
- 12. Dry the organic phase under nitrogen with gentle heating (37°C).
- 13. Resolve sterols in 400 μ L of 5% water in methanol.

Storage: DNA samples are stored at -80°C until analysis. Sterol samples are stored at 4°C

II. Positive ESI Liquid Chromatography Mass Spectrometry (ESI- LC/MS)

The LC/MS protocol outlined below is for the analysis of sterols in purified cell extracts (part I). Sterols were resolved by reverse-phase HPLC using a binary solvent system and gradient elution was performed on a C18 RP-HPLC column. The HPLC was coupled to a triple quadrupole MS with an ESI source. The MS was operated in multiple reaction monitoring (MRM) mode with transitions optimized for each sterol of interest. Sterols were quantified using the internal standards, surrogate, and relative response factor (RRF) of each sterol of interest.

A. Solutions:

1. Mobile Phase A Methanol with 5mM ammonium acetate

2. Mobile Phase B

15% High Purity water in methanol with 5mM ammonium acetate Mobile phases A and B were sparged with Helium for 5 minutes.

3. Surrogates

Two deuterated surrogates, 10 μL each, are added to cells before extraction:

Table 1	l:	Surrogate	composition
---------	----	-----------	-------------

SURROGATE MIX 1	SOURCE	CONCENTRATION [PPM]		
25-Hydroxycholesterol (D ₃) in	Avanti Polar Lipids	2.348		
MeOH				
24,25-Epoxycholesterol (D_6) in	Avanti Polar Lipids	1.656		
MeOH	-			
7α -Hydroxycholesterol (D ₇) in	Avanti Polar Lipids	1.983		
MeOH				
7-Oxocholesterol (D ₇) in MeOH	Avanti Polar Lipids	2.042		
4β -Hydroxycholesterol (D ₇) in	Avanti Polar Lipids	0.390		
МеОН				
SURROGATE MIX 2				
Cholesterol (D ₇) in MeOH	Avanti Polar Lipids	78.200		
Desmosterol (D ₆) in MeOH	Avanti Polar Lipids	78.278		

4. Internal Standard 27-Hydroxycholesterol (D₅) 5.258 ppm from Avanti Polar Lipids

B. Compounds of interest

We are monitoring the following compounds via Selected Reaction Monitoring

COMPOUND	MRM PAIR	
22r-Hydroxycholesterol	420/385	
24-Hydroxycholesterol	420/385	
25-Hydroxycholesterol	420/367	
26-Hydroxycholesterol	420/385	
24,25-Epoxycholesterol	418/383	
7α-Hydroxycholesterol	385/367	
7-Ketocholesterol	401/383	
5/6β Epoxycholesterol	420/385	
5/6a Epoxycholesterol	420/385	
4β-Hydroxycholesterol	420/385	
Zymosterol	385/367	
Desmosterol	402/367	
7-Dehydrocholesterol	385/367	
3keto cholestene	385/367	
Lathosterol	404/369	
Cholesterol	404/369	
Lanosterol	444/409	
Cholestanol	404/387	
24-Dihydrolanosterol	429/411	
3,16dioxo cholestenoic acid	429/411	
TriOH cholesterol	401/383	
4-chol-27acid-3one	415/397	
4-chol-22OH-3one	401/383	

4-chol-24OH-3one	401/383
4-chol-25OH-3one	401/383
4-chol-2OH-3one	401/383
20-Hydroxycholesterol	385/367
4-chol-26(25r)OH-3one	401/383
4-chol-26(25s)OH-3one	401/383
3keto 26cholestene	401/383
8(14) cholesten 38 15g diol	385/367
38 15g cholestanol	422/369
2(14) shelester 200U 15 ere	401/383
abalastan 3ah 15ana	401/385
	403/383
	401/383
8(14) cholesten 35,155 diol	383/307
<u>3</u> β,15β cholestanol	422/369
/ketocholestanone	401/383
dihydroxyketocholesterol	401/383
19-Hydroxycholesterol	420/385
4,6 Chlestadiene -3-one	383/365
Lathosterone	385/367
5-chol-3-one	385/367
cycloartenol	444/409
Bsitosterol	432/397
Bsitosterone	413/413
3,16dioxo cholestenoic acid	429/411
TriOH cholesterol	401/383
4-chol-27acid-3one	415/397
4-chol-22OH-3one	401/383
4-chol-24OH-3one	401/383
4-chol-25OH-3one	401/383
4-chol-2OH-3one	401/383
20-Hydroxycholesterol	385/367
4-chol-26(25r)OH-3one	401/383
4-chol-26(25s)OH-3one	401/383
3keto,26cholestene	401/383
8(14) cholesten 3β , 15α diol	385/367
3β ,15 α cholestanol	422/369
8(14) cholesten 3OH 15one	401/383
cholestan 3oh 15one	403/385
7α hydroxycholestenone	401/383
8(14) cholesten 3β , 15β diol	385/367
3β,15β cholestanol	422/369
7ketocholestanone	401/383
dihydroxy ketocholesterol	401/383
19-Hydroxycholesterol	420/385
4,6 Chlestadiene -3-one	383/365
Lathosterone	385/367
5-chol-3-one	385/367
cycloartenol	444/409
Bsitosterol	432/397
Bsitosterone	413/413
DEUTERATED COMPOUND	MRM Pair
7β-Oxocholesterol (D ₇)	408/390
7β-Hydroxycholesterol (D ₇)	391/373
4β-Hydroxycholesterol (D ₇)	426/391
7α -Hydroxycholesterol (D ₇)	391/373
25-Hydroxycholesterol (D ₃)	423/370
27- Hydroxycholesterol (D ₅)	425/390

24,25 Epoxycholesterol (D ₆)	424/389
Cholesterol (D ₇)	411/376
Desmosterol (D ₆)	408/373

C. Instrumentation

1. Column Information

Company: Phenomenex Packing: Reverse Phase C18 Particle Size: 3µ Diameter: 2mm Length: 150mm

This column is maintained at 25°C.

2. HPLC conditions

Total Flow: 0.25 mL/min

Table 3: HPLC Gradient

TIME (MIN)	% MOBILE PHASE B
0	100
2	100
8	0
18	0
23	100

3. API 4000 Q Trap Conditions

CUR: 15.00 CAD: Medium IS: 5500.00 GS1: 60.00 GS2: 20.00 DP: Variable Depending on MRM pair (45.00-120.00) EP: 10.00 CE: Variable Depending on MRM pair (10.00-65.00) CXP: 10.00