Fatty Acid Mass Spectrometry Protocol Updated 10/11/2007 By Daren Stephens

Synopsis:

This protocol describes the standard method for extracting and quantifying free fatty acids found in cells and media via negative ion chemical ionization GC-MS. Methanol, HCl and deuterated internal standards are added to cell or media samples that are then extracted with iso-octane and derivatized to pentafluorobenzyl esters for GC analysis. Samples are then analyzed by GC-MS along with a standard curve consisting of unlabeled primary fatty acid standards mixed with the same deuterated internal standards added to the samples. The ratios of unlabeled to labeled standard are measured for the standard curve and used to determine unlabeled analyte levels for samples. All operating parameters for the instrument are contained in the raw data files, all other conditions are listed here.

Storage: All samples and standards are stored under argon at -20°C.

Internal Standards

The internal standard contains 25 ng (0.25 ng/ μ l) of each of the following deuterated fatty acids in 100% ethanol:

<u>Compound</u>	Deuteration	<u>Supplier</u>	Catalog number
Lauric Acid (12:0)	d ₃	CDN Isotopes	D-4027
Myristic Acid (14:0)	d ₃	Cambridge Isotopes	DLM-1039-0.1
Pentadecanoic Acid (15:0)	d ₃	CDN Isotopes	D-5258
Palmitic Acid (16:0)	d ₃	CDN Isotopes	D-1655
Heptadecanoic Acid (17:0)	d ₃	CDN Isotopes	D-5255
Linoleic Acid (18:2)	d_4	Cayman Chemical	390150
Oleic Acid (18:1)	d ₂	Cambridge Isotopes	DLM-689-0.1
Stearic Acid (18:0)	d ₃	CDN Isotopes	D-1825
Eicosapentaenoic Acid (20:5)	d ₅	Cayman Chemical	10005056
Arachidonic Acid (20:4)	d ₈	Cayman Chemical	390010
Arachidic Acid (20:0)	d ₃	CDN Isotopes	D-5254
Docosahexaenoic Acid (22:6)	d ₅	Cayman Chemical	10005057
Behenic Acid (22:0)	d ₃	CDN Isotopes	D-5708
Lignoceric Acid (24:0)	d_4	CDN Isotopes	D-6167
Hexacosanoic Acid (26:0)	d ₄	CDN Isotopes	D-6145

Stocks are maintained at 10X concentration (2.5 ng/ μ l) in 100% ethanol and diluted to working strength at extraction time. 100 μ l of 1X internal standard mix is added to each sample just prior to extraction.

Primary Standards

The primary standard contains unlabeled analytes at known concentrations. A concentrated stock at 10 $ng/\mu l$ in 100% ethanol is made and serial diluted to create a standard curve.

<u>Compound</u>	<u>Supplier</u>	Catalog number
Lauric Acid (12:0)	Cayman Chemical	10006626
Myristic Acid (14:0)	Sigma Aldrich	70079
Pentadecanoic Acid (15:0)	Sigma Aldrich	P3600
Palmitoleic Acid (16:1)	Sigma Aldrich	76169
Palmitic Acid (16:0)	Cayman Chemical	10006627
Heptadecaenoic Acid (17:1)	Sigma Aldrich	H8896
Heptadecanoic Acid (17:0)	Sigma Aldrich	51610
Stearidonic Acid (18:4)	Cayman Chemical	90320
α -linolenic Acid (18:3)	Cayman Chemical	90210
γ-linolenic Acid (18:3)	Cayman Chemical	90220

Linoleic Acid (18:2)	Cayman Chemical	90150
Oleic Acid (18:1)	Cayman Chemical	90260
Stearic Acid (18:0)	Sigma Aldrich	85679
	Cayman Chemical	90110
Arachidonic Acid (20:4)	Cayman Chemical	90010
Eicosatrienoic Acid (20:3, n-3)	Cayman Chemical	90192
Dihomo- γ -linolenic Acid (20:3)	Cayman Chemical	90230
Eicosatrienoic Acid (20:3, n-9)	Cayman Chemical	90190
Eicosadienoic Acid (20:2)	Cayman Chemical	90330
Arachidic Acid (20:0)	Sigma Aldrich	10930
Docosahexaenoic Acid (22:6)	Cayman Chemical	90310
Docosapentaenoic Acid (22:5)		90165
Adrenic Acid (22:4)	Cayman Chemical	90300
Docosatrienoic Acid (22:3)	Cayman Chemical	90170
Docosadienoic Acid (22:2)	Sigma Aldrich	D4159
Docosaenoic Acid (22:1)	Cayman Chemical	90175
Behenic Acid (22:0)	Sigma Aldrich	11909
Tricosanoic Acid (23:0)	Sigma Aldrich	T6543
Nervonic Acid (24:1)	Sigma Aldrich	N1514
Lignoceric Acid (24:0)	Sigma Aldrich	L6641
Cerotic Acid (26:0)	Sigma Aldrich	H0388

Standard Curve

Standard curve samples are created by adding 50 μ l of each primary standard dilution to 100 μ l internal standard in washed 10 mm x 75 mm glass tubes.

Primary Standard Concentration (ng/µl)	<u>μl used</u>	<u>Total ng</u>	<u>µl internal standard</u>
10.0	50	500.0	100
3.0	50	150.0	100
1.0	50	50.0	100
0.3	50	15.0	100
0.1	50	5.0	100
0.03	50	1.5	100
0.01	50	0.5	100
0.003	50	0.15	100

The samples are dried down under vacuum using a speedvac and derivatized by adding 25 μ l 1% pentafluorobenzyl bromide in acetonitrile and 1% diisopropylethylamine in acetonitrile. After incubation at room temperature for 20 minutes, standard curve samples are dried under vacuum in a speedvac and 50 μ l iso-octane is added to dissolve the samples. 1 μ l is injected for GC-MS analysis.

GC conditions:

Agilent 6890N Gas Chromatograph 0.9 ml/min (50 cm/sec) Helium carrier gas (ultra high purity) Zebron ZB-1 100% dimethylpolysiloxane column (15 m x 0.25 mm ID x 0.10 mm film thickness) 250°C injector temp pulsed splitless mode (25 psi pulse) 280°C sample transfer line

Gradient:

150°C start

10°C/min to 270°C 40°C/min to 310°C, 1 minute hold

Mass Spectrometer conditions:

Analytes:

	Selective Detector gas (ultra high purity)
Reagent gas flow :	
Negative ion chem	
1 minute solvent d	elay
150°C Quad temp	
280°C Source tem	р
200 eV	
	toring (SIM), low resolution
10 ms dwell time o	in all ions
SIM ions and grou	<u>ps:</u>
Group 1 (9 to 12 c	arbons): 1.00 to 4.70 minutes
lons:	157, 171, 185, 199, 202, 213
Analytes:	9:0, 10:0, 11:0, 12:0, 12:0-d ₃ , 13:0
Group 2 (14 to 15)	carbons) 4.70 to 6.15 minutes
lons:	227, 230, 239, 241, 244
Analytes:	$14:0, 14:0-d_3, 15:1, 15:0, 15:0-d_3$
, and y tool	
	carbons) 6.15 to 7.70 minutes
lons:	253, 255, 258, 267, 269, 272
Analytes:	16:1, 16:0, 16:0-d ₃ , 17:1, 17:0, 17:0-d ₃
Group 4 (18 carbo	ns) 7.70 to 8.90 minutes
lons:	275, 277, 279, 281, 283, 286
Analytes:	18:4, 18:3, 18:2, 18:1, 18:2-d ₄ , 18:1-d ₂ , 18:0, 18:0-d ₃
Group 5 (20 carbo	ns) 8.90 to 9.85 minutes
lons:	299, 301, 303, 305, 306, 307, 309, 311, 314
Analytes:	20:6, 20:5, 20:4, 20:3, 20:5-d ₅ , 20:2, 20:1, 20:4-d ₈ , 20:0, 20:0-d ₈
• •	ns) 9.85 to 11.10 minutes
lons:	327, 329, 331, 332, 333, 335, 337, 339, 342
Analytes:	$22:6, 22:5, 22:4, 22:6-d_5, 22:3, 22:2, 22:1, 22:0, 22:0-d_3$
Group 7 (23 to 24	carbons) 11.10 to 12.40 minutes
lons:	353, 365, 367, 371
Analytes:	23:0, 24:1, 24:0, 24:0-d ₄
Group 8 (26 carbo	ns) 12.40 to 14.00 minutes
lons:	387, 389, 391, 393, 395, 399, 401
101101	

Data from the run is exported to NetCDF format using the "Export Data to AIA format" function (under the File menu) in the Agilent Enhanced Data Analysis program. CDF files generated here can be translated to .wiff files for data analysis by ABI Analyst using the **translat.exe** program found in the "bin" subdirectory of the main Analyst directory.

26:4, 26:3, 26:2, 26:1, 26:0, 26:0- d_4 , extra ion for data export

Sample Extraction

Free fatty acids are extracted from either cells or media by iso-octane. Cell number should be kept below 2 million (common use is 0.5 million cells). Addition of two volumes methanol lyses the cells and the mixture is acidified with HCl to 25 mM final concentration. For media, 0.5 ml media is mixed with 1 volume methanol and acidified with HCl to 25 mM final concentration. Internal standard is added and the sample is extracted twice with iso-octane and the upper layers pooled. Extracted fatty acids are dried down under vacuum and derivatized with pentafluorobenzyl bromide, dried down under vacuum and dissolved in 50 μ l iso-octane. 1 μ l derivatized sample is loaded onto the GC-MS for analysis.

Note: Due to fatty acid contamination, all glassware used in the procedure should be washed with soap (Fisher Versa-Clean) and water, then thoroughly washed with dH_2O .

Extraction of cell samples

1. Using a washed 16 mm x 125 mm glass tube, two volumes methanol is added to a minimum volume of 0.25 ml sample in DPBS (additional DPBS is added to bring lower volume samples up to 0.25 ml). 1 N HCl is added to 25 mM final concentration to acidify the mixture and 100 μ l internal standard is added.

2. Two total volumes iso-octane is added, and the sample is mixed and centrifuged at 3000 x g for 1 minute to separate layers. The top layer is removed and transferred to a washed 10 mm x 75 mm glass tube.

- 3. Repeat step 2.
- 4. Dry down under vacuum using speedvac.

5. Derivatize samples by adding 25 μ l 1% pentafluorobenzyl bromide in acetonitrile, and 25 μ l 1% disopropylethylamine in acetonitrile. Cap tubes, mix and let stand at room temperature for 20 minutes.

6. Dry down under vacuum using speedvac.

7. Dissolve samples in 50 μl iso-octane and transfer to labeled sample vial with 250 μl glass insert. Cap and place samples in the GC-MS sample tray and begin analysis.

Extraction of media samples

1. Using a washed 16 mm x 125 mm glass tube, one volume methanol is added to 0.5 ml media. 1 N HCl is added to 25 mM final concentration to acidify the mixture and 100 μ l internal standard is added.

2. One total volume iso-octane is added and the sample is mixed and centrifuged at 3000 x g for 1 minute to separate layers. The top layer is removed and transferred to a washed 10 mm x 75 mm glass tube.

- 3. Repeat step 2.
- 4. Dry down under vacuum using speedvac

5. Derivatize samples by adding 25 μ l 1% pentafluorobenzyl bromide in acetonitrile, and 25 μ l 1% disopropylethylamine in acetonitrile. Cap tubes, mix and let stand at room temperature for 20 minutes.

6. Dry down under vacuum using speedvac.

7. Dissolve samples in 50 μl iso-octane and transfer to labeled sample vial with 250 μl glass insert. Cap and place samples in the GC-MS sample tray and begin analysis.

Analyte Ion and Elution Table

Internal Standard

<u>Compound</u>	<u>SIM Ion</u>	Elution time (min)
Lauric Acid (12:0-d ₃)	202	3.81
Myristic Acid (14:0-d ₃)	230	5.33
Pentadecanoic Acid (15:0-d ₃)	244	6.09
Palmitic Acid (16:0-d ₃)	258	6.84
Heptadecanoic Acid (17:0-d ₃)	272	7.58
Linoleic Acid (18:2-d ₄)	283	8.01
Oleic Acid (18:1-d ₂)	283	8.08
Stearic Acid (18:0-d ₃)	286	8.30
Eicosapentaenoic Acid (20:5-d ₅)	306	9.02
Arachidonic Acid (20:4-d ₈)	311	8.99
Arachidic Acid (20:0-d ₃)	314	9.68
Docosahexaenoic Acid (22:6-d ₅)	332	10.20
Behenic Acid (22:0-d ₃)	342	10.97
Lignoceric Acid (24:0-d ₄)	371	12.17
Hexacosanoic Acid (26:0-d ₄)	399	12.92

Primary Standard

<u>Compound</u>	<u>SIM Ion</u>	Elution time (min)
Lauric Acid (12:0)	199	3.84
Myristic Acid (14:0)	227	5.35
Pentadecanoic Acid (15:0)	241	6.11
Palmitoleic Acid (16:1)	253	6.67
Palmitic Acid (16:0)	255	6.87
Heptadecaenoic Acid (17:1)	267	7.42
Heptadecanoic Acid (17:0)	269	7.60
Stearidonic Acid (18:4)	275	7.85
α -linolenic Acid (18:3)	277	7.82
γ-linolenic Acid (18:3)	277	8.06
Linoleic Acid (18:2)	279	8.02
Oleic Acid (18:1)	281	8.08
Stearic Acid (18:0)	283	8.32
Eicosapentaenoic Acid (20:5)	301	9.05
Arachidonic Acid (20:4)	303	9.02
Eicosatrienoic Acid (20:3, n-3)	305	9.08
Dihomo-γ-linolenic Acid (20:3)	305	9.24
Eicosatrienoic Acid (20:3, n-9)	305	9.46
Eicosadienoic Acid (20:2)	307	9.43
Arachidic Acid (20:0)	311	9.69
Docosahexaenoic Acid (22:6)	327	10.23
Docosapentaenoic Acid (22:5)	329	10.42
Adrenic Acid (22:4)	331	10.39
Docosatrienoic Acid (22:3)	333	10.78
Docosadienoic Acid (22:2)	335	10.76

Docosaenoic Acid (22:1)	337	10.80
Behenic Acid (22:0)	339	10.98
Tricosanoic Acid (23:0)	353	11.60
Nervonic Acid (24:1)	365	12.04
Lignoceric Acid (24:0)	367	12.18
Cerotic Acid (26:0)	395	12.93