Highlights from the Lipid Analysis Literature - 2020
The following references were collected as part of a weekly literature search that reflects my (former) personal research interests. However, most mainstream lipid analytical topics are covered. Among the exceptions are "steroidal hormones", "prostanoids", "fat-soluble vitamins" and "terpenoids", although some papers in these categories may be posted. My intention is to list only those papers that exhibit novel analytical methodology as opposed to tried and tested methods, although this may appear to introduce a bias towards modern mass spectrometry techniques. Some papers in press may be listed here without the full citation, but the DOI address should still be valid, and they may be updated later. References are listed alphabetically by the first author.
- Ahmed, R., Varras, P.C., Siskos, M.G., Siddiqui, H., Choudhary, M.I. and Gerothanassis, I.P. NMR and computational studies as analytical and high-resolution structural tool for complex hydroperoxides and diastereomeric endo-hydroperoxides of fatty acids in solution-exemplified by methyl linolenate. Molecules, 25, 4902 (2020); DOI.
- Al-Sari, N., Suvitaival, T., Mattila, I., Ali, A., Ahonen, L., Trost, K., Henriksen, T.F., Pociot, F., Dragsted, L.O. and Legido-Quigley, C. Lipidomics of human adipose tissue reveals diversity between body areas. PLOS One, 15, e0228521 (2020); DOI.
- Al-Tannak, N.F., Khadra, I., Igoli, N.P. and Igoli, J.O. LC-MS analysis of oils of Monodora myristica and Monodora tenuifolia and isolation of a novel cyclopropane fatty acid. Nat. Prod. Res., 34, 1227-1232 (2020); DOI.
- Aldana, J., Romero-Otero, A. and Cala, M.P. Exploring the lipidome: current lipid extraction techniques for mass spectrometry analysis. Metabolites, 10, 231 (2020); DOI.
- Amorim, T.L., Duarte, L.M., de Oliveira, M.A.L., de la Fuente, M.A. and Gomez-Cortes, P. Prediction of fatty acids in chocolates with an emphasis on C18:1 trans fatty acid positional isomers using ATR-FTIR associated with multivariate calibration. J. Agric. Food Chem., 68, 10893-10901 (2020); DOI.
- Anderson, D.M.G., Messinger, J.D., Patterson, N.H., Rivera, E.S., Kotnala, A., Spraggins, J.M., Caprioli, R.M., Curcio, C.A. and Schey, K.L. Lipid landscape of the human retina and supporting tissues revealed by high-resolution imaging mass spectrometry. J. Am. Soc. Mass Spectrom., 31, 2426-2436 (2020); DOI.
- Angers, P., Arul, J. and Jacques, H. Cyclic fatty acid monomers or the potential wild card in trans fats. J. Am. Oil Chem. Soc., 97, 1273-1275 (2020); DOI.
- Antonelli, M., Benedetti, B., Cavaliere, C., Cerrato, A., Montone, C.M., Piovesana, S., Lagana, A. and Capriotti, A.L. Phospholipidome of extra virgin olive oil: Development of a solid phase extraction protocol followed by liquid chromatography-high resolution mass spectrometry for its software-assisted identification. Food Chem., 310, 125860 (2020); DOI.
- Appala, K., Bimpeh, K., Freeman, C. and Hines, K.M. Recent applications of mass spectrometry in bacterial lipidomics. Anal. Bioanal. Chem., 412, 5935–5943 (2020); DOI.
- Armstrong, M., Manke, J., Nkrumah-Elie, Y., Shaikh, S.R. and Reisdorph, N. Improved quantification of lipid mediators in plasma and tissues by liquid chromatography tandem mass spectrometry demonstrates mouse strain specific differences. Prostaglandins Other Lipid Mediators, 151, 106483 (2020); DOI.
- Assi, A., Bakar, J., Libong, D., Sarkees, E., Solgadi, A., Baillet-Guffroy, A., Michael-Jubeli, R. and Tfayli, A. Comprehensive characterization and simultaneous analysis of overall lipids in reconstructed human epidermis using NPLC/HR-MSn: 1-O-E (EO) Cer, a new ceramide subclass. Anal. Bioanal. Chem., 412, 777-793 (2020); DOI.
- Auderset, A., Schmitt, M. and Martinez-Garcia, A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective Accelerated Solvent Extraction. Org. Geochem., 143, 103979 (2020); DOI.
- Avela, H.F. and Siren, H. Advances in lipidomics. Clin. Chim. Acta, 510, 123-141 (2020); DOI.
- Avela, H.F. and Siren, H. Advances in analytical tools and current statistical methods used in ultra-high-performance liquid chromatography-mass spectrometry of glycero-, glycerophospho- and sphingolipids. Int. J. Mass Spectrom., 457, 116408 (2020); DOI.
- Bagley, M.C., Ekelof, M. and Muddiman, D.C. Determination of optimal electrospray parameters for lipidomics in infrared-matrix-assisted laser desorption electrospray ionization mass spectrometry imaging. J. Am. Soc. Mass Spectrom., 31, 319-325 (2020); DOI.
- Bale, N.J., Koenen, M., Yadav, S., Hopmans, E.C., Villanueva, L., Damste, J.S.S. and Schouten, S. Diagnostic amide products of amino lipids detected in the microaerophilic bacteria Lutibacter during routine fatty acid analysis using gas chromatography. Org. Geochem., 144, 104027 (2020); DOI.
- Barchuk, M., Dutour, A., Ancel, P., Svilar, L., Miksztowicz, V., Lopez, G., Rubio, M., Schreier, L., Nogueira, J.P., Valero, R., Beliard, S., Martin, J.C., Berg, G. and Gaborit, B. Untargeted lipidomics reveals a specific enrichment in plasmalogens in epicardial adipose tissue and a specific signature in coronary artery disease. Arter. Thromb. Vasc. Biol., 40, 986-1000 (2020); DOI.
- Barrientos, R.C. and Zhang, Q.B. Recent advances in the mass spectrometric analysis of glycosphingolipidome - a review. Anal. Chim. Acta, 1132, 134-155 (2020); DOI.
- Bayona, L.M., van Leeuwen, G., Erol, O., Swierts, T., van Der Ent, E., de Voogd, N.J. and Choi, Y.H. Influence of geographical location on the metabolic production of giant barrel sponges (Xestospongia spp.) revealed by metabolomics tools. ACS Omega, 5, 12398-12408 (2020); DOI.
- Bene, J., Szabo, A., Komlosi, K. and Melegh, B. Mass spectrometric analysis of L-carnitine and its esters: potential biomarkers of disturbances in carnitine homeostasis. Curr. Mol. Med., 20, 336-354 (2020); DOI.
- Benke, P.I., Burla, B., Ekroos, K., Wenk, M.R. and Torta, F. Impact of ion suppression by sample cap liners in lipidomics. Anal. Chim. Acta, 1137, 136-142 (2020); DOI.
- Beyene, H.B., Olshansky, G., Smith, A.A.T., Giles, C., Huynh, K., Cinel, M., Mellett, N.A., Cadby, G., Hung, J., Hui, J.N., Beilby, J., Watts, G.F., Shaw, J.S., Moses, E.K., Magliano, D.J. and Meikle, P.J. High-coverage plasma lipidomics reveals novel sex-specific lipidomic fingerprints of age and BMI: Evidence from two large population cohort studies. PLOS Biol., 18, e3000870 (2020); DOI.
- Bezerra, K.D. and Antoniosi, N.R. Development of methods to quantify free and conjugated steroids in fatty matrices by HPLC-MS/MS. ACS Omega, 5, 12270-12277 (2020); DOI.
- Bhadwal, P., Dahiya, D., Shinde, D., Vaiphei, K., Math, R.G.H., Randhawa, V. and Agnihotri, N. LC-HRMS based approach to identify novel sphingolipid biomarkers in breast cancer patients. Sci. Rep., 10, 4668 (2020); DOI.
- Biagini, D., Antoni, S., Lomonaco, T., Ghimenti, S., Salvo, P., Bellagambi, F.G., Scaramuzzo, R.T., Ciantelli, M., Cuttano, A., Fuoco, R. and Di Francesco, F. Micro-extraction by packed sorbent combined with UHPLC-ESI-MS/MS for the determination of prostanoids and isoprostanoids in dried blood spots. Talanta, 206, 120236 (2020); DOI.
- Bianco, M., Calvano, C.D., Huseynli, L., Ventura, G., Losito, I. and Cataldi, T.R.I. Identification and quantification of phospholipids in strawberry seeds and pulp (Fragaria x ananassa cv San Andreas) by liquid chromatography with electrospray ionization and tandem mass spectrometry. J. Mass Spectrom., e4523 (2020); DOI.
- Bianco, M., Calvano, C.D., Losito, I., Palmisano, F. and Cataldi, T.R.I. Targeted analysis of ceramides and cerebrosides in yellow lupin seeds by reversed-phase liquid chromatography coupled to electrospray ionization and multistage mass spectrometry. Food Chem., 324, 126878 (2020); DOI.
- Bianco, M., Calvano, C.D., Ventura, G., Bianco, G., Losito, I. and Cataldi, T.R.I. Regiochemical assignment of N-Acylphosphatidylethanolamines (NAPE) by liquid chromatography/electrospray ionization with multistage mass spectrometry and its application to extracts of lupin seeds. J. Am. Soc. Mass Spectrom., 31, 1994-2005 (2020); DOI.
- Bien, T., Perl, M., Machmuller, A.C., Nitsche, U., Conrad, A., Johannes, L., Muthing, J., Soltwisch, J., Janssen, K.P. and Dreisewerd, K. MALDI-2 mass spectrometry and immunohistochemistry imaging of Gb3Cer, Gb4Cer, and further glycosphingolipids in human colorectal cancer tissue. Anal. Chem., 92, 7096-7105 (2020); DOI.
- Blanchard, V., Garcon, D., Jaunet, C., Chemello, K., Billon-Crossouard, S., Aguesse, A., Garfa, A., Famchon, G., Torres, A., Le May, C., Pichelin, M., Bigot-Corbel, E., Lambert, G., Cariou, B., Hadjadj, S., Krempf, M., Bach-Ngohou, K. and Croyal, M. A high-throughput mass spectrometry-based assay for large-scale profiling of circulating human apolipoproteins. J. Lipid Res., 61, 1128-1139 (2020); DOI.
- Blevins, M.S., James, V.K., Herrera, C.M., Purcell, A.B., Trent, M.S. and Brodbelt, J.S. Unsaturation elements and other modifications of phospholipids in bacteria: new insight from ultraviolet photodissociation mass spectrometry. Anal. Chem., 92, 9146-9155 (2020); DOI.
- Bobrich, M., Schwarz, R., Ramer, R., Borchert, P. and Hinz, B. A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. J. Chromatogr. B, 1161, 122371 (2020); DOI.
- Bolla, J.R., Corey, R.A., Sahin, C., Gault, J., Hummer, A., Hopper, J.T.S., Lane, D.P., Drew, D., Allison, T.M., Stansfeld, P.J., Robinson, C.V. and Landreh, M. A mass-spectrometry-based approach to distinguish annular and specific lipid binding to membrane proteins. Angew. Chem.-Int. Ed., 59, 3523-3528 (2020); DOI.
- Born, M.E.N. and Prentice, B.M. Structural elucidation of phosphatidylcholines from tissue using electron induced dissociation. Int. J. Mass Spectrom., 452, 116338 (2020); DOI.
- Boulet, L., Alex, B., Clavey, N., Martinez, J. and Ducros, V. Simultaneous analysis of retinol, six carotenoids, two tocopherols, and coenzyme Q10 from human plasma by HPLC. J. Chromatogr. B, 1511 122158 (2020); DOI.
- Broughton, R., Tocher, D.R. and Betancor, M.B. Development of a C18 supercritical fluid chromatography-tandem mass spectrometry methodology for the analysis of very-long-chain polyunsaturated fatty acid lipid matrices and its application to fish oil substitutes derived from genetically modified oilseeds in the aquaculture sector. ACS Omega, 5, 22289-22298 (2020); DOI.
- Bucsella, B., Hoffmann, A., Zollinger, M., Stephan, F., Pattky, M., Daumke, R., Heiligtag, F.J., Frank, B., Bassas-Galia, M., Zinn, M. and Kalman, F. Novel RP-HPLC based assay for selective and sensitive endotoxin quantification. Anal. Methods, 38, 4621-4634 (2020); DOI.
- Buenger, E.W. and Reid, G.E. Shedding light on isomeric FAHFA lipid structures using 213 nm ultraviolet photodissociation mass spectrometry. Eur. J. Mass Spectrom., 1469066720960341 (2020); DOI.
- Bulloch, P., Schur, S., Muthumuni, D., Xia, Z., Johnson, W., Chu, M., Palace, V., Su, G.Y., Letcher, R. and Tomy, G.T. F-2-isoprostanes in fish mucus: A new, non-invasive method for analyzing a biomarker of oxidative stress. Chemosphere, 239, 124797 (2020); DOI.
- Burger, N., Logan, A., Prime, T.A., Mottahedin, A., Caldwell, S.T., Krieg, T., Hartley, R.C., James, A.M. and Murphy, M.P. A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Rad. Biol. Med., 147, 37-47 (2020); DOI.
- Burrello, J., Biemmi, V., Dei Cas, M., Amongero, M., Bolis, S., Lazzarini, E., Bollini, S., Vassalli, G., Paroni, R. and Barile, L. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci. Rep., 10, 16182 (2020); DOI.
- Buzatto, A.Z., Kwon, B.K. and Li, L. Development of a NanoLC-MS workflow for high-sensitivity global lipidomic analysis. Anal. Chim. Acta, 1139, 88-99 (2020); DOI.
- Calderon, C., Rubarth, L., Cebo, M., Merfort, I. and Lammerhofer, M. Lipid atlas of keratinocytes and betulin effects on its lipidome profiled by comprehensive UHPLC-MS/MS with data independent acquisition using targeted data processing. Proteomics, 20, 1900113 (2020); DOI.
- Calvano, C.D., Bianco, M., Ventura, G., Losito, I., Palmisano, F. and Cataldi, T.R.I. Analysis of phospholipids, lysophospholipids, and their linked fatty acyl chains in yellow lupin seeds (Lupinus luteus L.) by liquid chromatography and tandem mass spectrometry. Molecules, 25, 805 (2020); DOI.
- Calvano, C.D., Coniglio, D., D'Alesio, P.E., Losito, I. and Cataldi, T.R.I. The occurrence of inositolphosphoceramides in spirulina microalgae. Electrophoresis, 41, 1760-1767 (2020); DOI.
- Cao, J.H., Goossens, P., Martin-Lorenzo, M., Dewez, F., Claes, B.S.R., Biessen, E.A.L., Heeren, R.M.A. and Balluff, B. Atheroma-specific lipids in ldlr(-/-) and apoe(-/-) mice using 2D AND 3D matrix-assisted laser desorption/ionization mass spectrometry imaging. J. Am. Soc. Mass Spectrom., 31, 1825-1832 (2020); DOI.
- Cao, W.B., Cheng, S.M., Yang, J., Feng, J.X., Zhang, W.P., Li, Z.S., Chen, Q.H., Xia, Y., Ouyang, Z. and Ma, X.X. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nature Commun., 11, 375 (2020); DOI.
- Cao, X.F., Brouwers, J.F.H.M., van Dijk, L., van de Lest, C.H.A., Parker, C.T., Huynh, S., van Putten, J.P.M., Kelly, D.J. and Wosten, M.M.S.M. The unique phospholipidome of the enteric pathogen Campylobacter jejuni: lysophospholipids are required for motility a low oxygen availability. J. Mol. Biol., 432, 5244-5258 (2020); DOI.
- Cao, Y.Q., Zhang, L., Zhang, J. and Guo, Y.L. Single-cell on-probe derivatization-noncontact nanocarbon fiber ionization: unraveling cellular heterogeneity of fatty alcohol and sterol metabolites. Anal. Chem., 92, 8378-8385 (2020); DOI.
- Cao, Z.J., Schmitt, T.C., Varma, V., Sloper, D., Beger, R.D. and Sun, J.C. Evaluation of the performance of Lipidyzer platform and its application in the lipidomics analysis in mouse heart and liver. J. Proteome Res., 19, 2742-2749 (2020); DOI.
- Capo, X., Ferrer, M.D., Olek, R.A., Salaberry, E., Gomila, R.M., Martorell, G., Sureda, A., Tur, J.A. and Pons, A. Simultaneous analysis of saturated and unsaturated oxylipins in 'ex vivo' cultured peripheral blood mononuclear cells and neutrophils. J. Pharm. Biomed. Anal., 186, 113258 (2020); DOI.
- Casati, S., Giannasi, C., Minoli, M., Niada, S., Ravelli, A., Angeli, I., Mergenthaler, V., Ottria, R., Ciuffreda, P., Orioli, M. and Brini, A.T. Quantitative lipidomic analysis of osteosarcoma cell-derived products by UHPLC-MS/MS. Biomolecules, 10, 1302 (2020); DOI.
- Cavdarli, S., Yamakawa, N., Clarisse, C., Aoki, K., Brysbaert, G., Le Doussal, J.M., Delannoy, P., Guerardel, Y. and Groux-Degroote, S. Profiling of O-acetylated gangliosides expressed in neuroectoderm derived cells. Int. J. Mol. Sci., 21, 370 (2020); DOI.
- Cebo, M., Fu, X.Q., Gawaz, M., Chatterjee, M. and Lammerhofer, M. Enantioselective ultra-high performance liquid chromatography-tandem mass spectrometry method based on sub-2 mu m particle polysaccharide column for chiral separation of oxylipins and its application for the analysis of autoxidized fatty acids and platelet releasates. J. Chromatogr. A, 1624 461206 (2020); DOI.
- Cebo, M., Fu, X.Q., Gawaz, M., Chatterjee, M. and Lammerhofer, M. Micro-UHPLC-MS/MS method for analysis of oxylipins in plasma and platelets. J. Pharm. Biomed. Anal., 189, 113426 (2020); DOI.
- Cebo, M., Schlotterbeck, J., Gawaz, M., Chatterjee, M. and Lammerhofer, M. Simultaneous targeted and untargeted UHPLC-ESI-MS/MS method with data-independent acquisition for quantification and profiling of (oxidized) fatty acids released upon platelet activation by thrombin. Anal. Chim. Acta, 1094, 57-69 (2020); DOI.
- Chao, H.C. and McLuckey, S.A. Differentiation and quantification of diastereomeric pairs of glycosphingolipids using gas-phase ion chemistry. Anal. Chem., 92, 13387-13395 (2020); DOI.
- Chapman, M.J., Orsoni, A., Tan, R., Mellett, N.A., Nguyen, A., Robillard, P., Giral, P., Therond, P. and Meikle, P.J. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J. Lipid Res., 61, 911-932 (2020); DOI.
- Chen, J.P., Li, Y.C., Cao, J.G., Huang, J.W., Jiang, C., Dai, X.L. and Huang, G.Z. Adiantic acid, a new unsaturated fatty acid with a cyclopropane moiety from Adiantum flabellulatum L. Nat. Prod. Res., 36, 2386-2392 (2020); DOI.
- Chen, K., Yang, H.J., Xue, J., Zhao, Q.L., Yu, X., Wang, P.Y., Wang, H.X. and Shen, Q. Untargeted screening of EPA/DHA structured phospholipids in krill oil by chain-lock-driven hydrophilic interaction liquid chromatography tandem mass spectrometry. J. Agric. Food Chem., 68, 14652-14659 (2020); DOI.
- Chen, X., Yin, Y.D., Zhou, Z.W., Li, T.Z. and Zhu, Z.J. Development of a combined strategy for accurate lipid structural identification and quantification in ion-mobility mass spectrometry based untargeted lipidomics. Anal. Chim. Acta, 1136, 115-124 (2020); DOI.
- Chen, Y.F., Hui, S.P., Miura, Y., Kato, S., Sakurai, T., Chen, Z., Okada, E., Ukawa, S., Nakagawa, T., Nakamura, K., Tamakoshi, A., Chiba, H., Minami, H. and Mizuta, M. Multivariate analysis for molecular species of cholesteryl ester in the human serum. Anal. Sci., 36, 373-378 (2020); DOI.
- Chen, Y.J., Zhou, X.H., Han, B., Yu, Z., Yi, H.X., Jiang, S.L., Li, Y.Y., Pan, J.C. and Zhang, L.W. Regioisomeric and enantiomeric analysis of primary triglycerides in human milk by silver ion and chiral HPLC atmospheric pressure chemical ionization-MS. J. Dairy Sci., 103, 7761-7774 (2020); DOI.
- Chen, Z., Wu, Y., Nagano, M., Ueshiba, K., Furukawa, E., Yamamoto, Y., Chiba, H. and Hui, S.P. Lipidomic profiling of dairy cattle oocytes by high performance liquid chromatography-high resolution tandem mass spectrometry for developmental competence markers. Theriogenology, 144, 56-66 (2020); DOI.
- Cheng, F., Wen, Z.F., Feng, X.D., Wang, X.M. and Chen, Y.J. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sci., 260, 118489 (2020); DOI.
- Chintalapudi, K. and Badu-Tawiah, A.K. An integrated electrocatalytic nESI-MS platform for quantification of fatty acid isomers directly from untreated biofluids. Chem. Sci., 11, 9891-9897 (2020); DOI.
- Chistyakov, D.V., Gavrish, G.E., Goriainov, S.V., Chistyakov, V.V., Astakhova, A.A., Azbukina, N.V. and Sergeeva, M.G. Oxylipin profiles as functional characteristics of acute inflammatory responses in astrocytes pre-treated with IL-4, IL-10, or LPS. Int. J. Mol. Sci., 21, 1780 (2020); DOI.
- Chistyakov, D.V. and 16 others Comparative lipidomic analysis of inflammatory mediators in the aqueous humor and tear fluid of humans and rabbits. Metabolomics, 16, 27 (2020); DOI.
- Choucair, I., Nemet, I., Li, L., Cole, M.A., Skye, S.M., Kirsop, J.D., Fischbach, M.A., Gogonea, V., Brown, J.M., Tang, W.H.W. and Hazen, S.L. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J. Lipid Res., 61, 159-177 (2020); DOI.
- Ciucanu, C.I., Vlad, D.C., Ciucanu, I. and Dumitrascu, V. Selective and fast methylation of free fatty acids directly in plasma for their individual analysis by gas chromatography- mass spectrometry. J. Chromatogr. A, 1624, 461259 (2020); DOI.
- Coffinet, S., Meador, T.B., Muhlena, L., Becker, K.W., Schroder, J., Zhu, Q.Z., Lipp, J.S., Heuer, V.B., Crump, M.P. and Hinrichs, K.U. Structural elucidation and environmental distributions of butanetriol and pentanetriol dialkyl glycerol tetraethers (BDGTs and PDGTs). Biogeosciences, 17, 317-330 (2020); DOI.
- Collu, R., Post, J.M., Scherma, M., Giunti, E., Fratta, W., Lutz, B., Fadda, P. and Bindila, L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim. Biophys. Acta, Lipids, 1865, 158578 (2020); DOI.
- Coniglio, D., Calvano, C.D., Ventura, G., Losito, I. and Cataldi, T.R.I. Arsenosugar phospholipids (As-PL) in edible marine algae: an interplay between liquid chromatography with electrospray ionization multistage mass spectrometry and phospholipases A(1) and A(2) for regiochemical assignment. J. Am. Soc. Mass Spectrom., 31, 1260-1270 (2020); DOI.
- Compton, B.J., Lagutin, K., Dyer, B.S., Ryan, J., MacKenzie, A., Stott, M.B., Nekrasov, E.V., Painter, G.F. and Vyssotski, M. Isolation and synthesis of glycophospholipids from the extremophile Chthonomonas calidirosea. Asian J. Org. Chem., 9, 1802-1814 (2020); DOI.
- Conte, L. The chemistry of olive oil: an endless story. OCL, 27, 28 (2020); DOI.
- Correia-Sa, I.B., Carvalho, C.M., Serrao, P.V., Loureiro, A.I., Fernandes-Lopes, C., Marques, M. and Vieira-Coelho, M.A. A new role for anandamide: defective link between the systemic and skin endocannabinoid systems in hypertrophic human wound healing. Sci. Rep., 10, 11134 (2020); DOI.
- Criscuolo, A., Zeller, M. and Fedorova, M. Evaluation of lipid in-source fragmentation on different orbitrap-based mass spectrometers. J. Am. Soc. Mass Spectrom., 31, 463-466 (2020); DOI.
- Danese, E., Negrini, D., Pucci, M., De Nitto, S., Ambrogi, D., Donzelli, S., Lievens, P.M.J., Salvagno, G.L. and Lippi, G. Bile acids quantification by liquid chromatography-tandem mass spectrometry: method validation, reference range, and interference study. Diagnostics, 10, 462 (2020); DOI.
- Danne-Rasche, N., Rubenzucker, S. and Ahrends, R. Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS. Anal. Chim. Acta, 1140, 199-209 (2020); DOI.
- Dazzoni, R., Bure, C., Morvan, E., Grelard, A., Gounou, C., Schmitter, J.M., Loquet, A., Larijani, B. and Dufourc, E.J. Tandem NMR and mass spectrometry analysis of human nuclear membrane lipids. Anal. Chem., 92, 6858-6868 (2020); DOI.
- de Araujo, L.S., Pessler, K., Suhs, K.W., Novoselova, N., Klawonn, F., Kuhn, M., Kaever, V., Muller-Vahl, K., Trebst, C., Skripuletz, T., Stangel, M. and Pessler, F. Phosphatidylcholine PC ae C44:6 in cerebrospinal fluid is a sensitive biomarker for bacterial meningitis. J. Transl. Med., 18, 9 (2020); DOI.
- de Jesus, S.S. and Maciel, R. Recent advances in lipid extraction using green solvents. Renew. Sustain. Energy Rev., 133, 110289 (2020); DOI.
- De Spiegeleer, M., De Graeve, M., Huysman, S., Vanderbeke, A., Van Meulebroek, L. and Vanhaecke, L. Impact of storage conditions on the human stool metabolome and lipidome: Preserving the most accurate fingerprint. Anal. Chim. Acta, 1108, 79-88 (2020); DOI.
- Dei Cas, M., Zulueta, A., Mingione, A., Caretti, A., Ghidoni, R., Signorelli, P. and Paroni, R. An innovative lipidomic workflow to investigate the lipid profile in a cystic fibrosis cell line. Cells, 9, 1197 (2020); DOI.
- Delmonte, P., Belaunzaran, X., Ridge, C.D., Aldai, N. and Kramer, J.K.G. Separation and characterization of products from acidic methanolysis of plasmalogenic lipids by two-dimensional gas chromatography with online reduction. J. Chromatogr. A, 1619, 460955 (2020); DOI.
- Deng, J.W., Yang, Y.Y., Luo, L.J., Xiao, Y.P. and Luan, T.G. Lipid analysis and lipidomics investigation by ambient mass spectrometry. Trends Anal. Chem., 128, 115924 (2020); DOI.
- Desmarais, A., Sebedio, J.L., Belkacemi, K., Arul, J. and Angers, P. Formation kinetics of monomeric cyclic fatty acid methyl esters of alpha-linolenic acid: effects of mono cis/trans isomers. J. Am. Oil Chem. Soc., 97, 615-624 (2020); DOI.
- Di Lorenzo, F., Crisafi, F., La Cono, V., Yakimov, M.M., Molinaro, A. and Silipo, A. The structure of the lipid A of Gram-negative cold-adapted bacteria isolated from Antarctic environments. Marine Drugs, 18, 592 (2020); DOI.
- Di Pietro, M.E., Mannu, A. and Mele, A. NMR determination of free fatty acids in vegetable oils. Processes, 8, 410 (2020); DOI.
- Ding, J., Kind, T., Zhu, Q.F., Wang, Y., Yan, J.W., Fiehn, O. and Feng, Y.Q. In-Silico-generated library for sensitive detection of 2-dimethylaminoethylamine derivatized FAHFA lipids using high-resolution tandem mass spectrometry. Anal. Chem., 92, 5960-5968 (2020); DOI.
- Ding, S., Lange, M., Lipp, J., Schwab, V.F., Chowdhury, S., Pollierer, M.M., Krause, K., Li, D.P., Kothe, E., Scheu, S., Welti, R., Hinrichs, K.U. and Gleixner, G. Characteristics and origin of intact polar lipids in soil organic matter. Soil Biol. Biochem., 151, 108045 (2020); DOI.
- Dittakavi, S., Mahadevan, L., Chandrashekar, D.V., Bhamidipati, R.K., Suresh, J., Dhakshinamoorthy, S., Li, Z.Y., Baerenz, F., Tennagels, N. and Mullangi, R. High-throughput screening assay for the quantification of Cer d18:1/16:0, d18:1/24:0, d18:1/24:1, d18:1/18:0, d18:1/14:0, d18:1/20:0, and d18:1/22:0 in HepG2 cells using RapidFire mass spectrometry. Biomed. Chromatogr., e4790 (2020); DOI.
- Djambazova, K.V., Klein, D.R., Migas, L.G., Neumann, E.K., Rivera, E.S., Van de Plas, R., Caprioli, R.M. and Spraggins, J.M. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. Anal. Chem., 92, 13290-13297 (2020); DOI.
- Dolgonosov, A.M. and Zaitceva, E.A. Factors determining the selectivity of stationary phases for geometric isomers of fatty acids in gas-liquid chromatographic analysis. J. Anal. Chem., 75, 1599-1607 (2020); DOI.
- Dongoran, R.A., Lin, T.J., Byekyet, A., Tang, S.C., Yang, J.H. and Liu, C.H. Determination of major endogenous FAHFAs in healthy human circulation: the correlations with several circulating cardiovascular-related biomarkers and anti-inflammatory effects on RAW 264.7 cells. Biomolecules, 10, 1689 (2020); DOI.
- Doomun, S.N.E., Nie, S., Loke, S., Kowalski, G.M., Beech, P.L. and Callahan, D.L. Ultrahigh-resolution mass spectrometry method for resolving C-13-enrichment patterns in a microalgal lipidome. J. Am. Soc. Mass Spectrom., 31, 1763-1772 (2020); DOI.
- Dorakumbura, B.N., Busetti, F. and Lewis, S.W. Analysis of squalene and its transformation by-products in latent fingermarks by ultrahigh-performance liquid chromatography-high resolution accurate mass Orbitrap (TM) mass spectrometry. Forensic Chem., 17, 100193 (2020); DOI.
- Eiersbrock, F.B., Orthen, J.M. and Soltwisch, J. Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal. Bioanal. Chem., 412, 6875–6886 (2020); DOI.
- Eiriksson, F.F., Nohr, M.K., Costa, M., Bodvarsdottir, S.K., Ogmundsdottir, H.M. and Thorsteinsdottir, M. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLOS One, 15, e0231289 (2020); DOI.
- Engel, K.M., Dzyuba, V., Dzyuba, B. and Schiller, J. Different glycolipids in sperm from different freshwater fishes - A high-performance thin-layer chromatography/electrospray ionization mass spectrometry study. Rapid Commun. Mass Spectrom., 34, e8875 (2020); DOI.
- Engel, K.M., Jakop, U., Muller, K., Grunewald, S., Paasch, U. and Schiller, J. MALDI MS analysis to investigate the lipid composition of sperm. Curr. Anal. Chem., 16, 79-91 (2020); DOI.
- Ertl, V.M., Horing, M., Schott, H.F., Blucher, C., Kjolbaek, L., Astrup, A., Burkhardt, R. and Liebisch, G. Quantification of diacylglycerol and triacylglycerol species in human fecal samples by flow injection Fourier transform mass spectrometry. Anal. Bioanal. Chem., 412, 2315-2326 (2020); DOI.
- Esch, P. and Heiles, S. Investigating C=C positions and hydroxylation sites in lipids using Paterno-Buchi functionalization mass spectrometry. Analyst, 145, 2256-2266 (2020); DOI.
- Eum, J.Y., Lee, J.C., Yi, S.S., Kim, I., Seong, J.K. and Moon, M.H. Aging-related lipidomic changes in mouse serum, kidney, and heart by nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 1618, 460849 (2020); DOI.
- Fabritius, M., Linderborg, K.M., Tarvainen, M., Kalpio, M., Zhang, Y.M. and Yang, B.R. Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas. Food Chem., 328, 126991 (2020); DOI.
- Fabryova, T., Tumova, L., da Silva, D.C., Pereira, D.M., Andrade, P.B., Valentao, P., Hrouzek, P., Kopecky, J. and Cheel, J. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Res., Biomass Biofuels Bioprod., 49, 101947 (2020); DOI.
- Fallone, C.J., Tessier, A.G., Field, C.J. and Yahya, A. Resolving the omega-3 methyl resonance with long echo time magnetic resonance spectroscopy in mouse adipose tissue at 9.4 T. NMR Biomed., e4455 (2020); DOI.
- Fan, C., Wen, L.J. and Cao, X.L. A biphasic system based on guanidinium ionic liquid: Preparative separation of eicosapentaenoic acid ethyl ester and docosahexaenoic acid ethyl ester by countercurrent chromatography. J. Chromatogr. A, 1618, 460872 (2020); DOI.
- Fang, M.X., Rustam, Y., Palmieri, M., Sieber, O.M. and Reid, G.E. Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal. Bioanal. Chem., 412, 2339-2351 (2020); DOI.
- Fanti, F., Vincenti, F., Montesano, C., Serafini, M., Compagnone, D. and Sergi, M. dLLME-mu SPE extraction coupled to HPLC-ESI-MS/MS for the determination of F2 alpha-IsoPs in human urine. J. Pharm. Biomed. Anal., 186, 113302 (2020); DOI.
- Fatima, Z., Nandan, S. and Hameed, S. Understanding mass spectrometry-based global Mycobacterial lipidomics. Curr. Mol. Med., 20, 607-623 (2020); DOI.
- Feider, C.L., Macias, L.A., Brodbelt, J.S. and Eberlin, L.S. Double bond characterization of free fatty acids directly from biological tissues by ultraviolet photodissociation. Anal. Chem., 92, 8386-8395 (2020); DOI.
- Feng, G.F., Hao, Y.H., Wu, L. and Chen, S.M. A visible-light activated [2+2] cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids. Chem. Sci., 11, 7244-7251 (2020); DOI.
- Ferguson, B., Bokka, N.R., Maddipati, K.R., Ayilavarapu, S., Weltman, R., Zhu, L.S., Chen, W.Q., Zheng, W.J., Angelov, N., Van Dyke, T.E. and Lee, C.T. Distinct profiles of specialized pro-resolving lipid mediators and corresponding receptor gene expression in periodontal inflammation. Front. Immun., 11, 1307 (2020); DOI.
- Filimoniuk, A., Blachnio-Zabielska, A., Imierska, M., Lebensztejn, D.M. and Daniluk, U. Sphingolipid analysis indicate lactosylceramide as a potential biomarker of inflammatory bowel disease in children. Biomolecules, 10, 1083 (2020); DOI.
- Finkelstein, S., Gospe, S.M., Schuhmann, K., Shevchenko, A., Arshavsky, V.Y. and Lobanova, E.S. Phosphoinositide profile of the mouse retina. Cells, 9, 1417 (2020); DOI.
- Flores, J., White, B.M., Brea, R.J., Baskin, J.M. and Devaraj, N.K. Lipids: chemical tools for their synthesis, modification, and analysis. Chem. Soc. Rev., 49, 4602-4614 (2020); DOI.
- Franklin, E.T. and Xia, Y. Structural elucidation of triacylglycerol using online acetone Paterno-Buchi reaction coupled with reversed-phase liquid chromatography mass spectrometry. Analyst, 145, 6532-6540 (2020); DOI.
- Franklin, E.T., Shields, S.W.J., Manthorpe, J.M., Smith, J.C., Xia, Y. and McLuckey, S.A. Coupling headgroup and alkene specific solution modifications with gas-phase ion/ion reactions for sensitive glycerophospholipid identification and characterization. J. Am. Soc. Mass Spectrom., 31, 938-945 (2020); DOI.
- Freitas, F.P., Raber, G., Jensen, K.B., Nogueira, A.J.A. and Francesconi, K.A. Lipids that contain arsenic in the Mediterranean mussel, Mytilus galloprovincialis. Environm. Chem., 17, 289-301 (2020); DOI.
- Froning, M., Helmer, P.O. and Hayen, H. Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry. Rapid Commun. Mass Spectrom., 34, e8897 (2020); DOI.
- Fu, H., Zhang, Q.L., Huang, X.W., Ma, Z.H., Zheng, X.L., Li, S.L., Duan, H.N., Sun, X.C., Lin, F.F., Zhao, L.J., Teng, G.S. and Liu, J. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom., 34, e8730 (2020); DOI.
- Fu, T.T., Oetjen, J., Chapelle, M., Verdu, A., Szesny, M., Chaumot, A., Degli-Esposti, D., Geffard, O., Clement, Y., Salvador, A. and Ayciriex, S. In situ isobaric lipid mapping by MALDI-ion mobility separation-mass spectrometry imaging. J. Mass Spectrom., 55, e4531 (2020); DOI.
- Fujiwara, Y., Hama, K. and Yokoyama, K. Mass spectrometry in combination with a chiral column and multichannel-MRM allows comprehensive analysis of glycosphingolipid molecular species from mouse brain. Carbohydrate Res., 490, 107959 (2020); DOI.
- Gaikwad, N.W. Bileome: The bile acid metabolome of rat. Biochem. Biophys. Res. Commun., 533, 458-466 (2020); DOI.
- Gallart-Ayala, H., Teav, T. and Ivanisevic, J. Metabolomics meets lipidomics: Assessing the small molecule component of metabolism. Bioessays, 42, e2000052 (2020); DOI.
- Gao, L., Cazenave-Gassiot, A., Burla, B., Wenk, M.R. and Torta, F. Dual mass spectrometry as a tool to improve annotation and quantification in targeted plasma lipidomics. Metabolomics, 16, 53 (2020); DOI.
- Gao, W., Walther, A., Wekenborg, M., Penz, M. and Kirschbaum, C. Determination of endocannabinoids and N-acylethanolamines in human hair with LC-MS/MS and their relation to symptoms of depression, burnout, and anxiety. Talanta, 217, 121006 (2020); DOI.
- Garate, J., Lage, S., Martin-Saiz, L., Perez-Valle, A., Ochoa, B., Boyano, M.D., Fernandez, R. and Fernandez, J.A. Influence of lipid fragmentation in the data analysis of imaging mass spectrometry experiments. J. Am. Soc. Mass Spectrom., 31, 517-526 (2020); DOI.
- Genva, M., Andersson, M.X. and Fauconnier, M.L. Simple liquid chromatography-electrospray ionization ion trap mass spectrometry method for the quantification of galacto-oxylipin arabidopsides in plant samples. Sci. Rep., 10, 11957 (2020); DOI.
- George, A.D., Gay, M.C.L., Wlodek, M.E., Trengove, R.D., Murray, K. and Geddes, D.T. Untargeted lipidomics using liquid chromatography-ion mobility-mass spectrometry reveals novel triacylglycerides in human milk. Sci. Rep., 10, 9255 (2020); DOI.
- Glaser, L., Kuhl, M., Jovanovic, S., Fritz, M., Vogeli, B., Erb, TJ., Becker, J. and Wittmann, C. A common approach for absolute quantification of short chain CoA thioesters in prokaryotic and eukaryotic microbes. Microbial Cell Factories, 19, 160 (2020); DOI.
- Gollasch, B., Wu, G.L., Liu, T., Dogan, I., Rothe, M., Gollasch, M. and Luft, F.C. Hemodialysis and erythrocyte epoxy fatty acids. Physiol. Rep., 8, e14601 (2020); DOI.
- Gong, L.L., Yang, S., Zhang, W., Han, F.F., Lv, Y.L., Xuan, L.L., Liu, H. and Liu, L.H. Discovery of metabolite profiles of metabolic syndrome using untargeted and targeted LC-MS based lipidomics approach. J. Pharm. Biomed. Anal., 177, 112848 (2020); DOI.
- Gorman, B.L. and Kraft, M.L. High-resolution secondary ion mass spectrometry analysis of cell membranes. Anal. Chem., 92, 1645-1652 (2020); DOI.
- Gotze, S. and Stallforth, P. Structure elucidation of bacterial nonribosomal lipopeptides. Org. Biomol. Chem., 18, 1710-1727 (2020); DOI.
- Gowda, S.G.B., Gao, Z.J., Chen, Z., Abe, T., Hori, S., Fukiya, S., Ishizuka, S., Yokota, A., Chiba, H. and Hui, S.P. Untargeted lipidomic analysis of plasma from high-fat diet-induced obese rats using UHPLC-linear trap quadrupole-orbitrap MS. Anal. Sci., 36, 821-828 (2020); DOI.
- Gowda, S.G.B., Gowda, D., Liang, C.S., Li, Y.H., Kawakami, K., Fukiya, S., Yokota, A., Chiba, H. and Hui, S.P. Chemical labeling assisted detection and identification of short chain fatty acid esters of hydroxy fatty acid in rat colon and cecum contents. Metabolites, 10, 398 (2020); DOI.
- Gowda, S.G.B., Liang, C.S., Gowda, D., Hou, F.J., Kawakami, K., Fukiya, S., Yokota, A., Chiba, H. and Hui, S.P. Identification of short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) in a murine model by nontargeted analysis using ultra-high-performance liquid chromatography/linear ion trap quadrupole-Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom., 34, e8831 (2020); DOI.
- Graille, M., Wild, P., Sauvain, J.J., Hemmendinger, M., Canu, I.G. and Hopf, N. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta -analysis. Toxicol. Letts, 328, 19-27 (2020); DOI.
- Green, H.S., Li, X.Q., De Pra, M., Lovejoy, K.S., Steiner, F., Acworth, I.N. and Wang, S.C. A rapid method for the detection of extra virgin olive oil adulteration using UHPLC-CAD profiling of triacylglycerols and PCA. Food Control, 107, 106773 (2020); DOI.
- Grossert, J.S., Melanson, J.E. and Ramaley, L. Fragmentation pathways of cationized, saturated, short-chain triacylglycerols: lithiated and sodiated tripropanoyl- and trihexanoylglycerol. J. Am. Soc. Mass Spectrom., 31, 34-46 (2020); DOI.
- Guha, S., Calarco, S., Gachet, M.S. and Gertsch, J. Juniperonic acid biosynthesis is essential in Caenorhabditis elegans lacking Delta 6 desaturase (fat-3) and generates new omega-3 endocannabinoids. Cells, 9, 2127 (2020); DOI.
- Gulin, A.A., Nadtochenko, V.A., Pogorelova, V.N., Melnikov, M.Y. and Pogorelov, A.G. Sample preparation of biological tissues and cells for the time-of-flight secondary ion mass spectrometry. J. Anal. Chem., 75, 701-710 (2020); DOI.
- Guo, X.F., Tong, W.F., Ruan, Y., Sinclair, A.J. and Li, D. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins Leukotrienes Essential Fatty Acids, 158, 102033 (2020); DOI.
- Gutierrez-del-Rio, I. and 17 others Chlorosphaerolactylates A-D: natural lactylates of chlorinated fatty acids isolated from the cyanobacterium Sphaerospermopsis sp. LEGE 00249. J. Nat. Prod., 83, 1885-1890 (2020); DOI.
- Hajjar, G., Rizk, T., Bejjani, J. and Akoka, S. Metabisotopomics of triacylglycerols from animal origin: A simultaneous metabolomic and isotopic profiling using C-13 INEPT. Food Chem., 315, 126325 (2020); DOI.
- Hammerschick, T., Wagner, T. and Vetter, W. Countercurrent chromatographic fractionation followed by gas chromatography/mass spectrometry identification of alkylresorcinols in rye. Anal. Bioanal. Chem., 412, 8417-8430 (2020); DOI.
- Hartler, J., Armando, A.M., Trotzmuller, M., Dennis, E.A., Kofeler, H.C. and Quehenberger, O. Automated annotation of sphingolipids including accurate identification of hydroxylation sites using MSn data. Anal. Chem., 92, 14054-14062 (2020); DOI.
- Hartung, N.M., Ostermann, A.I., Immenschuh, S. and Schebb, N.H. Combined targeted proteomics and oxylipin metabolomics for monitoring of the COX-2 pathway. Proteomics, 1900058 (2020); DOI.
- Harvey, D.J. and Vouros, P. Mass spectrometric fragmentation of trimethylsilyl and related alkylsilyl derivatives. Mass Spectrom. Rev., 34, 105-211 (2019); DOI.
- Hasi, R.Y., Majima, D., Morito, K., Ali, H., Kogure, K., Nanjundan, M., Hayashi, J., Kawakami, R., Kanemaru, K. and Tanaka, T. Isolation of glycosylinositol phosphoceramide and phytoceramide 1-phosphate in plants and their chemical stabilities. J. Chromatogr. B, 1152, 122213 (2020); DOI.
- Hellhake, S., Meckelmann, S.W., Empl, M.T., Rentmeister, K., Wissdorf, W., Steinberg, P., Schmitz, O.J., Benter, T. and Schebb, N.H. Non-targeted and targeted analysis of oxylipins in combination with charge-switch derivatization by ion mobility high-resolution mass spectrometry. Anal. Bioanal. Chem., 412, 5743–5757 (2020); DOI.
- Helmer, P.O., Korf, A. and Hayen, H. Analysis of artificially oxidized cardiolipins and monolyso-cardiolipins via liquid chromatography/high-resolution mass spectrometry and Kendrick mass defect plots after hydrophilic interaction liquid chromatography based sample preparation. Rapid Commun. Mass Spectrom., 34, e8566 (2020); DOI.
- Helmer, P.O., Behrens, A., Rudt, E., Karst, U. and Hayen, H. Hydroperoxylated vs dihydroxylated lipids: differentiation of isomeric cardiolipin oxidation products by multidimensional separation techniques. Anal. Chem., 92, 12010-12016 (2020); DOI.
- Helmer, P.O., Wienken, C.M., Korf, A. and Hayen, H. Mass spectrometric investigation of cardiolipins and their oxidation products after two-dimensional heart-cut liquid chromatography. J. Chromatogr. A, 1619, 460918 (2020); DOI.
- Hennebelle, M., Morgan, R.K., Sethi, S., Zhang, Z.C., Chen, H., Grodzki, A.C., Lein, P.J. and Taha, A.Y. Linoleic acid-derived metabolites constitute the majority of oxylipins in the rat pup brain and stimulate axonal growth in primary rat cortical neuron-glia co-cultures in a sex-dependent manner. J. Neurochem., 152, 195-207 (2020); DOI.
- Hinners, P., Thomas, M. and Lee, Y.J. Determining fingerprint age with mass spectrometry imaging via ozonolysis of triacylglycerols. Anal. Chem., 92, 3125-3132 (2020); DOI.
- Hoang, T.P.T., Barthelemy, M., Lami, R., Stien, D., Eparvier, V. and Touboul, D. Annotation and quantification of N-acyl homoserine lactones implied in bacterial quorum sensing by supercritical-fluid chromatography coupled with high-resolution mass spectrometry. Anal. Bioanal. Chem., 412, 2261–2276 (2020); DOI.
- Holder, C., Adams, A., McGahee, E., Xia, B.Y., Blount, B.C. and Wang, L.Q. High-throughput and sensitive analysis of free and total 8-isoprostane in urine with isotope-dilution liquid chromatography-tandem mass spectrometry. ACS Omega, 5, 10919-10926 (2020); DOI.
- Horati, H., Janssens, H.M., Margaroli, C., Veltman, M., Stolarczyk, M., Kilgore, M.B., Chou, J., Peng, L.M., Tiddens, H.A.M.W., Chandler, J.D., Tirouvanziam, R. and Scholte, B.J. Airway profile of bioactive lipids predicts early progression of lung disease in cystic fibrosis. J. Cystic Fibrosis, 19, 902-909 (2020); DOI.
- Hosring, M., Ekroos, K., Baker, P.R.S., Connell, L., Stadler, S.C., Burkhardt, R. and Liebisch, G. Correction of isobaric overlap resulting from sodiated ions in lipidomics. Anal. Chem., 92, 10966-10970 (2020); DOI.
- Hu, B.Y., Song, C.W., Li, L.Y., Wang, M.Q., Jia, S.L., Li, S., Du, Z.F., Ding, X.P. and Jiang, H.L. Qualitative distribution of endogenous phosphatidylcholine and sphingomyelin in serum using LC-MS/MS based profiling. J. Chromatogr. B, 1155, 122289 (2020); DOI.
- Hu, C.F., Duan, Q. and Han, X.L. Strategies to improve/eliminate the limitations in shotgun lipidomics. Proteomics, 20, 1900070 (2020); DOI.
- Hu, C.F., Wang, M., Duan, Q. and Han, X.L. Sensitive analysis of fatty acid esters of hydroxy fatty acids in biological lipid extracts by shotgun lipidomics after one-step derivatization. Anal. Chim. Acta, 1105, 105-111 (2020); DOI.
- Hu, C.X., Zhou, Y., Feng, J., Zhou, S.Y., Li, C.Z., Zhao, S.D., Shen, Y.T., Hong, L.C., Xuan, Q.H., Liu, X.Y., Li, Q., Wang, X.L., Zhang, Y.Z. and Xu, G.W. Untargeted lipidomics reveals specific lipid abnormalities in nonfunctioning human pituitary adenomas. J. Proteome Res., 19, 455-63 (2020); DOI.
- Hu, T., An, Z.L., Shi, C., Li, P.F. and Liu, L.H. A sensitive and efficient method for simultaneous profiling of bile acids and fatty acids by UPLC-MS/MS. J. Pharm. Biomed. Anal., 178, 112815 (2020); DOI.
- Hu, T., Zhu, Q.F., Hu, Y.N., Kamal, G.M., Feng, Y.Q., Manyande, A., Wang, J. and Xu, F.Q. Qualitative and quantitative analysis of regional cerebral free fatty acids in rats using the stable isotope labeling liquid chromatography-mass spectrometry method. Molecules, 25, 5163 (2020); DOI.
- Huang, P.S., Huang, C.Y., Lin, T.C., Lin, L.E., Yang, E.H., Lee, C.P., Hsu, C.C. and Chou, P.T. Toward the rational design of universal dual polarity matrix for MALDI Mass spectrometry. Anal. Chem., 92, 7139-7145 (2020); DOI.
- Huang, Z.H., Wu, Q., Lu, H.M., Wang, Y. and Zhang, Z.M. Separation of glycolipids/sphingolipids from glycerophospholipids on TiO2 coating in aprotic solvent for rapid comprehensive lipidomic analysis with liquid microjunction surface sampling-mass spectrometry. Anal. Chem., 92, 11250-11259 (2020); DOI.
- Ianni, F., Blasi, F., Giusepponi, D., Coletti, A., Galli, F., Chankvetadze, B., Galarini, R. and Sardella, R. Liquid chromatography separation of alpha- and gamma-linolenic acid positional isomers with a stationary phase based on covalently immobilized cellulose tris(3,5-dichlorophenylcarbamate). J. Chromatogr. A, 1609, 460461 (2020); DOI.
- Ica, R., Petrut, A., Munteanu, C.V.A., Sarbu, M., Vukelic, Z., Petrica, L. and Zamfir, A.D. Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging. J. Mass Spectrom., 55, e4502 (2020); DOI.
- Ica, R., Simulescu, A., Sarbu, M., Munteanu, C.V.A., Vukelic, Z. and Zamfir, A.D. High resolution mass spectrometry provides novel insights into the ganglioside pattern of brain cavernous hemangioma. Anal. Biochem., 609, 113976 (2020); DOI.
- Ichihara, K., Kohsaka, C., Tomari, N., Yamamoto, Y. and Masumura, T. Determination of free fatty acids in plasma by gas chromatography. Anal. Biochem., 603, 113810 (2020); DOI.
- Ishii, S., Taguchi, A., Okino, N., Ito, M. and Maruyama, H. Determination of globotriaosylceramide analogs in the organs of a mouse model of Fabry disease. J. Biol. Chem., 295, 5577-5587 (2020); DOI.
- Ito, J., Shimizu, N., Kato, S., Ogura, Y. and Nakagawa, K. Direct separation of the diastereomers of cholesterol ester hydroperoxide using LC-MS/MS to evaluate enzymatic lipid oxidation. Symmetry-Basel, 12, 1127 (2020); DOI.
- Iwatani, S., Iijima, H., Otake, Y., Amano, T., Tani, M., Yoshihara, T., Tashiro, T., Tsujii, Y., Inoue, T., Hayashi, Y., Takeda, K., Hayashi, A., Fujita, S., Shinzaki, S. and Takehara, T. Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroent. Hepat., 35, 1355-1364 (2020); DOI.
- Jaspers, Y.R.J., Ferdinandusse, S., Dijkstra, I.M.E., Barendsen, R.W., van Lenthe, H., Kulik, W., Engelen, M., Goorden, S.M.I., Vaz, F.M. and Kemp, S. Comparison of the diagnostic performance of C26:0-lysophosphatidylcholine and very long-chain fatty acids analysis for peroxisomal disorders. Front. Cell Developm. Biol., 8, 690 (2020); DOI.
- Jeck, V., Froning, M., Tiso, T., Blank, L.M. and Hayen, H. Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids by liquid chromatography-mass spectrometry applying online Paterno-Buchi reaction. Anal. Bioanal. Chem., 412, 5601–5613 (2020); DOI.
- John, C.M., Phillips, N.J. and Jarvis, G.A. Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. J. Lipid Res., 61, 1437-1449 (2020); DOI.
- Jones, A., Lee, O.Y.C., Minnikin, D.E., Baird, M.S. and Al Dulayymi, J.R. A re-investigation of the mycolic acids of Mycobacterium avium. Chem. Phys. Lipids, 230, 104928 (2020); DOI.
- Jones, G.M., Caccavello, R., Palii, S.P., Pullinger, C.R., Kane, J.P., Mulligan, K., Gugliucci, A. and Schwarz, J.M. Separation of postprandial lipoproteins: improved purification of chylomicrons using an ApoB100 immunoaffinity method. J. Lipid Res., 61, 455-463 (2020); DOI.
- Kagan, V.E., Tyurina, Y.Y., Sun, W.Y., Vlasova, I.I., Dar, H., Tyurin, V.A., Amoscato, A.A., Mallampalli, R., van der Wel, P.C.A., He, R.R., Shvedova, A.A., Gabrilovich, D.I. and Bayir, H. Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Rad. Biol. Med., 147, 231-241 (2020); DOI.
- Kalpio, M., Magnusson, J.D., Gudmundsson, H.G., Linderborg, K.M., Kallio, H., Haraldsson, G.G. and Yang, B.R. Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem. Phys. Lipids, 231, 104937 (2020); DOI.
- Karara, J.R., Kowalski, M., Markotic, A., Zemunik, T. and Culic, V.C. Distinct cerebellar glycosphingolipid phenotypes in Wistar and Lewis rats. Neurochem. J., 14, 20-24 (2020); DOI.
- Kawana, M., Miyamoto, M., Ohno, Y. and Kihara, A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J. Lipid Res., 61, 884-895 (2020); DOI.
- Kawashima, H. Novel non-methylene-interrupted dienoic and trienoic fatty acids with a terminal double bond in ovaries of the limpet Cellana toreuma. Lipids, 55, 285-290 (2020); DOI.
- Kawashima, M., Tokiwa, M., Nishimura, T., Kawata, Y., Sugimoto, M., Kataoka, T.R., Sakurai, T., Iwaisako, K., Suzuki, E., Hagiwara, M., Harris, A.L. and Toi, M. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Brit. J. Cancer, 122, 245-257 (2020); DOI.
- Kehelpannala, C., Rupasinghe, T.W.T., Hennessy, T., Bradley, D., Ebert, B. and Roessner, U. A comprehensive comparison of four methods for extracting lipids from Arabidopsis tissues. Plant Methods, 16, 155 (2020); DOI.
- Khan, M.J., Codreanu, S.G., Goyal, S., Wages, P.A., Gorti, S.K.K., Pearson, M.J., Uribe, I., Sherrod, S.D., McLean, J.A., Porter, N.A. and Robinson, R.A.S. Evaluating a targeted multiple reaction monitoring approach to global untargeted lipidomic analyses of human plasma. Rapid Commun. Mass Spectrom., 34, e8911 (2020); DOI.
- Khoury, S., Masson, E., Sibille, E., Cabaret, S. and Berdeaux, O. Rapid sample preparation for ganglioside analysis by liquid chromatography mass spectrometry. J. Chromatogr. B, 1137, 121956 (2020); DOI.
- Kida, M., Nakamura, T. and Murata, T. A novel eicosapentaenoic acid-derived anti-inflammatory lipid mediator 5,6-DiHETE is abundant in blue back fish intestines. J. Food Sci., 85, 1983-1987 (2020); DOI.
- Kij, A., Kus, K., Czyzynska-Cichon, I., Chlopicki, S. and Walczak, M. Development and validation of a rapid, specific and sensitive LC-MS/MS bioanalytical method for eicosanoid quantification - assessment of arachidonic acid metabolic pathway activity in hypertensive rats. Biochimie, 171, 223-232 (2020); DOI.
- Kim, J. and Hoppel, C.L. Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS. J. Lipid Res., 61, 1707-1719 (2020); DOI.
- King, A.M., Trengove, R.D., Mullin, L.G., Rainville, P.D., Isaac, G., Plumb, R.S., Gethings, L.A. and Wilson, I.D. Rapid profiling method for the analysis of lipids in human plasma using ion mobility enabled-reversed phase-ultra high performance liquid chromatography/mass spectrometry. J. Chromatogr. A, 1611, 460597 (2020); DOI.
- Kirschbaum, C., Saied, E.M., Greis, K., Mucha, E., Gewinner, S., Schollkopf, W., Meijer, G., von Helden, G., Poad, B.L.J., Blanksby, S.J., Arenz, C. and Pagel, K. Resolving sphingolipid isomers using cryogenic infrared spectroscopy. Angew. Chem.-Int. Ed., 59, 13638-13642 (2020); DOI.
- Klein, D.R., Blevins, M.S., Macias, L.A., Douglass, M.V., Trent, M.S. and Brodbelt, J.S. Localization of double bonds in bacterial glycerophospholipids using 193 nm ultraviolet photodissociation in the negative mode. Anal. Chem., 92, 5986-5993 (2020); DOI.
- Knodel, A., Foest, D., Brandt, S., Ahlmann, N., Marggraf, U., Gilbert-Lopez, B. and Franzke, J. Detection and evaluation of lipid classes and other hydrophobic compounds using a laser desorption/plasma ionization interface. Anal. Chem., 92, 15212-15220 (2020); DOI.
- Koch, E., Mainka, M., Dalle, C., Ostermann, A.I., Rund, K.M., Kutzner, L., Froehlich, L.F., Bertrand-Michel, J., Gladine, C. and Schebb, N.H. Stability of oxylipins during plasma generation and long-term storage. Talanta, 217, 121074 (2020); DOI.
- Koelmel, J.P., Li, X.D., Stow, S.M., Sartain, M.J., Murali, A., Kemperman, R., Tsugawa, H., Takahashi, M., Vasiliou, V., Bowden, J.A., Yost, R.A., Garrett, T.J. and Kitagawa, N. Lipid annotator: towards accurate annotation in non-targeted liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) lipidomics using a rapid and user-friendly software. Metabolites, 10, 101 (2020); DOI.
- Koelmel, J.P., Napolitano, M.P., Ulmer, C.Z., Vasiliou, V., Garrett, T.J., Yost, R.A., Prasad, M.N.V., Pollitt, K.J.G. and Bowden, J.A. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics, 16, 56 (2020); DOI.
- Kokotou, M.G. Analytical methods for the determination of fatty acid esters of hydroxy fatty acids (FAHFAS) in biological samples, plants and foods. Biomolecules, 10, 1092 (2020); DOI.
- Kopczynski, D., Hoffmann, N., Peng, B. and Ahrends, R. Goslin: a grammar of succinct lipid nomenclature. Anal. Chem., 92, 10957-10960 (2020); DOI.
- Kotapati, H.K. and Bates, P.D. Normal phase HPLC method for combined separation of both polar and neutral lipid classes with application to lipid metabolic flux. J. Chromatogr. B, 1145, 122099 (2020); DOI.
- Kotapati, H.K. and Bates, P.D. Analysis of isotopically-labeled monogalactosyldiacylglycerol molecular species from [C-14]acetate-labeled tobacco leaves. Bio-Protocol, 10, e3864 (2020); DOI.
- Krenkel, H., Hartmane, E., Piras, C., Brown, J., Morris, M. and Cramer, R. Advancing liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry toward ultrahigh-throughput analysis. Anal. Chem., 92, 2931-2936 (2020); DOI.
- Kumar, A., Prasad, A. and Pospisil, P. Formation of alpha-tocopherol hydroperoxide and alpha-tocopheroxyl radical: relevance for photooxidative stress in Arabidopsis. Sci. Rep., 10, 19646 (2020); DOI.
- Lacombe, R.J.S., Lee, C.C. and Bazinet, R.P. Turnover of brain DHA in mice is accurately determined by tracer-free natural abundance carbon isotope ratio analysis. J. Lipid Res., 61, 116-126 (2020); DOI.
- Laudicella, V.A., Whitfield, P.D., Carboni, S., Doherty, M.K. and Hughes, A.D. Application of lipidomics in bivalve aquaculture, a review. Rev. Aquaculture, 12, 678-702 (2020); DOI.
- Law, K.P., Li, X.X. and Zhang, C.L. Lipidomics in archaeal membrane adaptation to environmental stresses and growth conditions: A review of culture-based physiological studies. Sci. China, Earth Sci., 63, 790–807 (2020); DOI.
- Lellman, S.E. and Cramer, R. Bacterial identification by lipid profiling using liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Clin. Chem. Lab. Med., 58, 930-938 (2020); DOI.
- Leung, H.H., Leung, K.S., Durand, T., Galano, J.M. and Lee, J.C.Y. Measurement of enzymatic and nonenzymatic polyunsaturated fatty acid oxidation products in plasma and urine of macular degeneration using LC-QTOF-MS/MS. Lipids, 55, 693-706 (2020); DOI.
- Li, C.J., Zhao, D., Cheng, P., Zheng, L. and Yu, G.H. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism. BMC Genomics, 21, 834 (2020); DOI.
- Li, H., Song, Y., Zhang, H.W., Wang, X.S., Cong, P.X., Xu, J. and Xue, C.H. Comparative lipid profile of four edible shellfishes by UPLC-Triple TOF-MS/MS. Food Chem., 310, 125947 (2020); DOI.
- Li, H., Xu, R.L., Yang, L.J., Luan, H.M., Chen, S.L., Chen, L., Cai, Z.W. and Tian, R.J. Combinatory data-independent acquisition and parallel reaction monitoring method for deep profiling of gangliosides. Anal. Chem., 92, 10830-10838 (2020); DOI.
- Li, N.S., Chen, L., Xiao, Z.X., Yang, Y.Q. and Ai, K.L. Progress in detection of biomarker of ovarian cancer: lysophosphatidic acid. Chin. J. Anal. Chem., 48, 1597-1606 (2020); DOI.
- Li, P., Deng, J.W., Xiao, N., Cai, X., Wu, Q.J., Lu, Z., Yang, Y.Y. and Du, B. Identification of polyunsaturated triacylglycerols and C=C location isomers in sacha inchi oil by photochemical reaction mass spectrometry combined with nuclear magnetic resonance spectroscopy. Food Chem., 307, 125568 (2020); DOI.
- Li, P., Zhang, M.H., Sun, C., Wang, D.Y., Xu, W.M., Zou, Y., Ma, J.J. and Zhu, Y.Z. A novel photoelectrochemical sensor based on tailoring printable mesoscopic chip for fast and real-time phospholipids oxidation detection. Food Chem., 314, 126173 (2020); DOI.
- Li, X., Zhang, L.X., Zhang, Y., Wang, D., Wang, X.F., Yu, L., Zhang, W. and Li, P.W. Review of NIR spectroscopy methods for nondestructive quality analysis of oilseeds and edible oils. Trends Food Sci. Technol., 101, 172-181 (2020); DOI.
- Li, Y., Pang, T., Shi, J.L., Deng, X.P., Kong, G.H. and Lu, X.P. Conversion method for linear retention indices in gas chromatography acquired using n-alkanes and n-fatty acid methyl esters. Chin. J. Chromatogr., 38, 244-249 (2020); DOI.
- Liakh, I., Pakiet, A., Sledzinski, T. and Mika, A. Methods of the analysis of oxylipins in biological samples. Molecules, 25, 349 (2020); DOI.
- Liakh, I., Sledzinski, T., Kaska, L., Mozolewska, P. and Mika, A. Sample preparation methods for lipidomics approaches used in studies of obesity. Molecules, 25, 5307 (2020); DOI.
- Liao, H.W., Kuo, C.H., Chao, H.C. and Chen, G.Y. Post-column infused internal standard assisted lipidomics profiling strategy and its application on phosphatidylcholine research. J. Pharm. Biomed. Anal., 178, 112956 (2020); DOI.
- Liebisch, G. and 15 others Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res., 61, 1539-1555 (2020); DOI.
- Lillja, J., Duncan, K.D. and Lanekoff, I. Determination of monounsaturated fatty acid isomers in biological systems by modeling ms3 product ion patterns. J. Am. Soc. Mass Spectrom., 31, 2479-2487 (2020); DOI.
- Lin, C.C., Sengee, A. and Mjos, S.A. Minor compounds and potential interferents in gas chromatographic analyses of human serum fatty acids. J. Chromatogr. B, 1138, 121963 (2020); DOI.
- Lin, Q.H., Zhang, D.H. and Xia, Y. Analysis of ether glycerophosphocholines at the level of CC locations from human plasma. Analyst, 145, 513-522 (2020); DOI.
- Linke, V. and others. A large-scale genome-lipid association map guides lipid identification. Nat Metab.,2, 1149-1162 (2020); DOI.
- Liu, A.Y., Zhang, H., Ding, J.H., Kou, W., Yan, F., Huang, K.K. and Chen, H.W. Enrichment of phospholipids using magnetic Fe3O4/TiO2 nanoparticles for quantitative detection at single cell levels by electrospray ionization mass spectrometry. Talanta, 212, 120769 (2020); DOI.
- Liu, G. and Gibson, R. A rapid method for the separation of the phospholipids from the neutral lipids in plasma. Prostaglandins Leukotrienes Essential Fatty Acids, 157, 102096 (2020); DOI.
- Liu, K.D., Acharjee, A., Hinz, C., Liggi, S., Murgia, A., Denes, J.L., Gulston, M.K., Wang, X.Z., Chu, Y.J., West, J.A., Glen, R.C., Roberts, L.D., Murray, A.J. and Griffin, J.L. Consequences of lipid remodeling of adipocyte membranes being functionally distinct from lipid storage in obesity. J. Proteome Res., 19, 3919-3935 (2020); DOI.
- Liu, Z., Li, L., He, J., Chen, L.D., Wang, J.J. and Jia, G.D. Operational laboratory methods for GDGTs groups separation. J. Ocean Univ. China, 19, 1073-1080 (2020); DOI.
- Liu, Z.Q., Li, C., Pryce, J. and Rochfort, S. Comprehensive characterization of bovine milk lipids: triglycerides. ACS Omega, 5, 12573-12582 (2020); DOI.
- Lofgren, L., Forsberg, G.B., Davidsson, P., Eketjall, S. and Whatling, C. Development of a highly sensitive liquid chromatography-mass spectrometry method to quantify plasma leukotriene E-4 and demonstrate pharmacological suppression of endogenous 5-LO pathway activity in man. Prostaglandins Other Lipid Mediators, 150, 106463 (2020); DOI.
- Long, N.P., Park, S., Anh, N.H., Kim, S.J., Kim, H.M., Yoon, .SJ., Lim, J. and Kwon, S.W. Advances in liquid chromatography-mass spectrometry-based lipidomics: a look ahead. J. Anal. Testing, 4, 183–197 (2020); DOI.
- Lopez-Bascon, M.A., Calderon-Santiago, M., Diaz-Lozano, A., Camargo, A., Lopez-Miranda, J. and Priego-Capote, F. Development of a qualitative/quantitative strategy for comprehensive determination of polar lipids by LC-MS/MS in human plasma. Anal. Bioanal. Chem., 412, 489–498 (2020); DOI.
- Lopez-Lopez, A., Godzien, J., Soldevilla, B., Gradillas, A., Lopez-Gonzalvez, A., Lens-Pardo, A., La Salvia, A., Riesco-Martinez, M.D., Garcia-Carbonero, R. and Barbas, C. Oxidized lipids in the metabolic profiling of neuroendocrine tumors - Analytical challenges and biological implications. J. Chromatogr. A, 1625, 461233 (2020); DOI.
- Lu, X.T., Zhang, S.D., Gong, C. and Xu, X. Separation and determination of triacylglycerols in edible oils by high performance liquid chromatography with porous graphite carbon column and n-octane-isopropanol mobile phase. Chin. J. Anal. Chem., 48, 1084-1095 (2020); DOI.
- Lv, W.J., Wang, L.C., Xuan, Q.H., Zhao, X.J., Liu, X.Y., Shi, X.Z. and Xu, G.W. Pseudotargeted method based on parallel column two-dimensional liquid chromatography-mass spectrometry for broad coverage of metabolome and lipidome. Anal. Chem., 92, 6043-6050 (2020); DOI.
- Ma, L., Fong, B.Y., MacGibbon, A.K.H. and Norris, G. Qualitative and quantitative study of glycosphingolipids in human milk and bovine milk using high performance liquid chromatography-data-dependent acquisition-mass spectrometry. Molecules, 25, 4024 (2020); DOI.
- Maddox, S.W., Olsen, S.S.H., Velosa, D.C., Burkus-Matesevac, A., Peverati, R. and Chouinard, C.D. Improved identification of isomeric steroids using the Paterno-Buchi reaction with ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom., 31, 2086-2092 (2020); DOI.
- Maekawa, M., Iwahori, A. and Mano, N. Biomarker analysis of Niemann-Pick disease type C using chromatography and mass spectrometry. J. Pharm. Biomed. Anal., 191, 113622 (2020); DOI.
- Mainka, M., Dalle, C., Petera, M., Dalloux-Chioccioli, J., Kampschulte, N., Ostermann, AI., Rothe, M., Bertrand-Michel, J., Newman, J.W., Gladine, C. and Schebb, N.H. Harmonized procedures lead to comparable quantification of total oxylipins across laboratories. J. Lipid Res., 61, 1424-1436 (2020); DOI.
- Manzini, S., Busnelli, M., Colombo, A., Kiamehr, M. and Chiesa, G. liputils: a Python module to manage individual fatty acid moieties from complex lipids. Sci. Rep., 10, 13368 (2020); DOI.
- Markowski, A.R., Blachnio-Zabielska, A.U., Guzinska-Ustymowicz, K., Markowska, A., Pogodzinska, K., Roszczyc, K., Zinczuk, J. and Zabielski, P. Ceramides profile identifies patients with more advanced stages of colorectal cancer. Biomolecules, 10, 632 (2020); DOI.
- Mashima, R., Okuyama, T. and Ohira, M. Biomarkers for lysosomal storage disorders with an emphasis on mass spectrometry. Int. J. Mol. Sci., 21, 2704 (2020); DOI.
- Matsuoka, Y., Izumi, Y., Takahashi, M., Bamba, T. and Yamada, K. Method for structural determination of lipid-derived radicals. Anal. Chem., 92, 6993-7002 (2020); DOI.
- Medina, J., van der Velpen, V., Teav, T., Guitton, Y., Gallart-Ayala, H. and Ivanisevic, J. Single-step extraction coupled with targeted HILIC-MS/MS approach for comprehensive analysis of human plasma lipidome and polar metabolome. Metabolites, 10, 495 (2020); DOI.
- Merlier, F., Octave, S., Bui, B.T.S. and Thomasset, B. Evaluation of performance and validity limits of gas chromatography electron ionisation with Orbitrap detection for fatty acid methyl ester analyses. Rapid Commun. Mass Spectrom., e8609 (2020); DOI.
- Micalizzi, G., Ragosta, E., Farnetti, S., Dugo, P., Tranchida, P.Q., Mondello, L. and Rigano, F. Rapid and miniaturized qualitative and quantitative gas chromatography profiling of human blood total fatty acids. Anal. Bioanal. Chem., 412, 2327–2337 (2020); DOI.
- Mignard, V., Dubois, N., Lanoe, D., Joalland, M.P., Oliver, L., Pecqueur, C., Heymann, D., Paris, F., Vallette, F.M. and Lalier, L. Sphingolipid distribution at mitochondria-associated membranes (MAMs) upon induction of apoptosis. J. Lipid Res., 61, 1025-1037 (2020); DOI.
- Miller, K.E. and Jorgenson, J.W. Comparison of microcapillary column length and inner diameter investigated with gradient analysis of lipids by ultrahigh-pressure liquid chromatography-mass spectrometry. J. Sep. Sci., 43, 4094-4102 (2020); DOI.
- Miller, Z.M., Zhang, J.D., Donald, W.A. and Prell, J.S. Gas-phase protonation thermodynamics of biological lipids: experiment, theory, and implications. Anal. Chem., 92, 10365-10374 (2020); DOI.
- Miniewska, K., Godzien, J., Mojsak, P., Maliszewska, K., Kretowski, A. and Ciborowski, M. Mass spectrometry-based determination of lipids and small molecules composing adipose tissue with a focus on brown adipose tissue. J. Pharm. Biomed. Anal., 191, 113623 (2020); DOI.
- Mitchell, J.M., Flight, R.M. and Moseley, H.N.B. Deriving lipid classification based on molecular formulas. Metabolites, 10, 122 (2020); DOI.
- Mittermeier, V.K., Pauly, K., Dunkel, A. and Hofmann, T. Ion-mobility-based liquid chromatography-mass spectrometry quantitation of taste-enhancing octadecadien-12-ynoic acids in mushrooms. J. Agric. Food Chem., 68, 5741-5751 (2020); DOI.
- Mohamed, A., Collins, J., Jiang, H., Molendijk, J., Stoll, T., Torta, F., Wenk, M.R., Bird, R.J., Marlton, P., Mollee, P., Markey, K.A. and Hill, M.M. Concurrent lipidomics and proteomics on malignant plasma cells from multiple myeloma patients: Probing the lipid metabolome. PLOS One, 15, e0227455 (2020); DOI.
- Mohamed, A., Molendijk, J. and Hill, M.M. lipidr: A software tool for data mining and analysis of lipidomics datasets. J. Proteome Res., 19, 2890-2897 (2020); DOI.
- Mohammad, K., Jiang, H., Hossain, M.I. and Titorenko, V.I. Quantitative analysis of the cellular lipidome of Saccharomyces cerevisiae using liquid chromatography coupled with tandem mass spectrometry. JOVE-J. Vis. Exp., 157, e60616 (2020); DOI.
- Monsonis-Centelles, S., Hoefsloot, H.C.J., Engelsen, S.B., Smilde, A.K. and Lind, M.V. Repeatability and reproducibility of lipoprotein particle profile measurements in plasma samples by ultracentrifugation. Clin. Chem. Lab. Med., 58, 103-115 (2020); DOI.
- Morita, M., Saito, S., Shinohara, R., Aoyagi, R., Arita, M. and Kobayashi, Y. Synthesis of phosphatidylcholines possessing functionalized acids at sn-2, and C-13-N-14 and C-13-P-31 couplings in their C-13 NMR spectra. Synlett, 31, 718-722 (2020); DOI.
- Morita, Y., Kurano, M., Sakai, E., Nishikawa, T., Nishikawa, M., Sawabe, M., Aoki, J. and Yatomi, Y. Analysis of urinary sphingolipids using liquid chromatography-tandem mass spectrometry in diabetic nephropathy. J. Diabetes Invest., 11, 441-449 (2020); DOI.
- Mukhtarova, L.S., Lantsova, N.V., Khairutdinov, B.I. and Grechkin, A.N. Lipoxygenase pathway in model bryophytes: 12-oxo-9(13),15-phytodienoic acid is a predominant oxylipin in Physcomitrella patens. Phytochemistry, 180, 112533 (2020); DOI.
- Municoy, M., Gonzalez-Benjumea, A., Carro, J., Aranda, C., Linde, D., Renau-Minguez, C., Ullrich, R., Hofrichter, M., Guallar, V., Gutierrez, A. and Martinez, A.T. Fatty-acid oxygenation by fungal peroxygenases: from computational simulations to preparative regio- and stereoselective epoxidation. ACS Catalysis, 10, 13584-13595 (2020); DOI.
- Murali, B.V., Kurawattimath, V., Bhutani, P., Onorato, J., Naikodi, S.B., Kole, P. and Rajanna, P.K. Qualified method for the estimation of di-18:1 bis(monoacylglycero)phosphate in urine, a noninvasive biomarker to monitor drug-induced phospholipidosis. Bioanalysis, 12, 1049–1059 (2020); DOI.
- Nagai, K., Uranbileg, B., Chen, Z., Fujioka, A., Yamazaki, T., Matsumoto, Y., Tsukamoto, H., Ikeda, H., Yatomi, Y., Chiba, H., Hui, S.P., Nakazawa, T., Saito, R., Koshiba, S., Aoki, J., Saigusa, D. and Tomioka, Y. Identification of novel biomarkers of hepatocellular carcinoma by high-definition mass spectrometry: Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry and desorption electrospray ionization mass spectrometry imaging. Rapid Commun. Mass Spectrom., 34, e8551 (2020); DOI.
- Nagai, T., Kinoshita, T., Kasamatsu, E., Yoshinaga, K., Mizobe, H., Yoshida, A., Itabashi, Y. and Gotoh, N. Simultaneous quantification of mixed-acid triacylglycerol positional isomers and enantiomers in palm oil and lard by chiral high-performance liquid chromatography coupled with mass spectrometry. Symmetry-Basel, 12, 1385 (2020); DOI.
- Nagumalli, S.K., Jacob, C.C. and da Costa, G.G. A rapid and highly sensitive UPLC-ESI-MS/MS method for the analysis of the fatty acid profile of edible vegetable oils. J. Chromatogr. B, 1161, 122415 (2020); DOI.
- Nam, J.-W., Jenkins, L.M., Li, J., Evans, B.S., Jaworski, J.G. and Allen, D.K. A general method for quantification and discovery of acyl groups attached to acyl carrier proteins in fatty acid metabolism using LC-MS/MS. Plant Cell, 32, 820-832 (2020); DOI.
- Narreddula, V.R., Sadowski, P., Boase, N.R.B., Marshall, D.L., Poad, B.L.J., Trevitt, A.J., Mitchell, T.W. and Blanksby, S.J. Structural elucidation of hydroxy fatty acids by photodissociation mass spectrometry with photolabile derivatives. Rapid Commun. Mass Spectrom., 34, e8741 (2020); DOI.
- Napylov, A., Reyes-Garces, N., Gomez-Rios, G., Olkowicz, M., Lendor, S., Monnin, C., Bojko, B., Hamani, C., Pawliszyn, J. and Vuckovic, D. In vivo solid-phase microextraction for sampling of oxylipins in brain of awake, moving rats. Angew. Chem.-Int. Ed., 59, 2392-2398 (2020); DOI.
- Naumoska, K., Jug, U., Metlicar, V. and Vovk, I. Oleamide, a bioactive compound, unwittingly introduced into the human body through some plastic food/beverages and medicine containers. Foods, 9, 549 (2020); DOI.
- Neves, B., Duarte, S., Domingues, P., Perez-Sala, D., Oliveira, M.M., Domingues, M.R. and Melo, T. Advancing target identification of nitrated phospholipids in biological systems by HCD specific fragmentation fingerprinting in orbitrap platforms. Molecules, 25, 2120 (2020); DOI.
- Ney, L.J., Felmingham, K.L., Bruno, R., Matthews, A. and Nichols, D.S. Simultaneous quantification of endocannabinoids, oleoylethanolamide and steroid hormones in human plasma and saliva. J. Chromatogr. B, 1152, 122252 (2020); DOI.
- Nichols, F.C., Clark, R.B., Liu, Y.L., Provatas, A.A., Dietz, C.J., Zhu, Q., Wang, Y.H. and Smith, M.B. Glycine lipids of Porphyromonas gingivalis are agonists for toll-like receptor 2. Infect. Immun., 88, e00877-19 (2020); DOI.
- Nielsen, I.O., Olsen, A.V., Dicroce-Giacobini, J., Papaleo, E., Andersen, K.K., Jaattela, M. and Maeda, K., Bilgin, M. Comprehensive evaluation of a quantitative shotgun lipidomics platform for mammalian sample analysis on a high-resolution mass spectrometer. J. Am. Soc. Mass Spectrom., 31, 894-907 (2020); DOI.
- Niisuke, K., Kuklenyik, Z., Horvath, K.V., Gardner, M.S., Toth, C.A. and Asztalos, B.F. Composition-function analysis of HDL subpopulations: influence of lipid composition on particle functionality. J. Lipid Res., 61, 306-315 (2020); DOI.
- O'Donnell, V.B., FitzGerald, G.A., Murphy, R.C., Liebisch, G., Dennis, E.A., Quehenberger, O., Subramaniam, S. and Wakelam, M.J.O. Steps toward minimal reporting standards for lipidomics mass spectrometry in biomedical research publications. Circulation: Gen. Precision Med., 13, e003019 (2020); DOI.
- Oh, C.E., Kim, G.J., Park, S.J., Choi, S., Park, M.J., Lee, O.M., Seo, J.W. and Son, H.J. Purification of high purity docosahexaenoic acid from Schizochytrium sp. SH103 using preparative-scale HPLC. Appl. Biol. Chem., 63, 56 (2020); DOI.
- Ohira, M., Okuyama, T. and Mashima, R. Long-chain base (LCB)-targeted lipidomics study uncovering the presence of a variety of LCBs in mammalian blood. Separations, 7, 57 (2020); DOI.
- Oliveira, I.G.C. and Queiroz, M.E.C. A micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry to determine anandamide and 2-arachidonoylglycerol in rat brain samples. J. Chromatogr. B, 1158, 122351 (2020); DOI.
- Oliw, E.H. and Hamberg, M. Charge migration fragmentation in the negative ion mode of cyclopentenone and cyclopentanone intermediates in the biosynthesis of jasmonates. Rapid Commun. Mass Spectrom., 34, e8665 (2020); DOI.
- Ostermann, A.I., Koch, E., Rund, K.M., Kutzner, L., Mainka, M. and Schebb, N.H. Targeting esterified oxylipins by LC-MS - Effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediators, 146, 106384 (2020); DOI.
- Ozolina, N.V., Gurina, V.V., Nesterkina, I.S. and Nurminsky, V.N. Variations in the content of tonoplast lipids under abiotic stress. Planta, 251, 107 (2020); DOI.
- Palyzova, A. and Rezanka, T. Separation of triacylglycerols containing allenic and acetylenic fatty acids by enantiomeric liquid chromatography-mass spectrometry. J. Chromatogr. A, 1623, 461161 (2020); DOI.
- Palyzova, A. and Rezanka, T. Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids). J. Chromatogr. A, 1622, 461103 (2020); DOI.
- Pan, Q.Q., Shen, M., Yu, T., Yang, X.D., Li, Q.L., Zhao, B.B., Zou, J.H. and Zhang, M. Liquid chromatography as candidate reference method for the determination of vitamins A and E in human serum. J. Clin. Lab. Analysis, 34, e23528 (2020); DOI.
- Panzenboeck, L., Troppmair, N., Schlachter, S., Koellensperger, G., Hartler, J. and Rampler, E. Chasing the major sphingolipids on earth: automated annotation of plant glycosyl inositol phospho ceramides by glycolipidomics. Metabolites, 10, 375 (2020); DOI.
- Pathmasiri, K.C., Pergande, M.R., Tobias, F., Rebiai, R., Rosenhouse-Dantsker, A., Bongarzone, E.R. and Cologna, S.M. Mass spectrometry imaging and LC/MS reveal decreased cerebellar phosphoinositides in Niemann-Pick type C1-null mice. J. Lipid Res., 61, 1004-1013 (2020); DOI.
- Paulazo, M.A. and Sodero, A.O. Analysis of cholesterol in mouse brain by HPLC with UV detection. PLOS One, 15, e0228170 (2020); DOI.
- Pchelkin, V.P. Calculations of the hydrophobicity of lipid molecules by the elution strength of the chromatographic solvent. J. Anal. Chem., 75, 615-621 (2020); DOI.
- Pellegrini, N., Vitaglione, P., Granato, D. and Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. J. Sci. Food Agric., 100, 5064-5078 (2020); DOI.
- Peng, B. and 19 others. LipidCreator workbench to probe the lipidomic landscape. Nature Commun., 11, 2057 (2020); DOI.
- Penkert, H., Lauber, C., Gerl, M.J., Klose, C., Damm, M., Fitzner, D., Flierl-Hecht, A., Kumpfel, T., Kerschensteiner, M., Hohlfeld, R., Gerdes, L.A. and Simons, M. Plasma lipidomics of monozygotic twins discordant for multiple sclerosis. Annals Clin. Transl. Neur., 7, 2461-2466 (2020); DOI.
- Pereiro, X., Fernandez, R., Barreda-Gomez, G., Ruzafa, N., Acera, A., Araiz, J., Astigarraga, E. and Vecino, E. Comparative lipidomic analysis of mammalian retinal ganglion cells and Muller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry. Sci. Rep., 10, 20053 (2020); DOI.
- Perry, W.J., Patterson, N.H., Prentice, B.M., Neumann, E.K., Caprioli, R.M. and Spraggins, J.M. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. J. Mass Spectrom., e4491 (2020); DOI.
- Peterka, O., Jirasko, R., Chocholouskova, M., Kuchar, L., Wolrab, D., Hajek, R., Vrana, D., Strouhal, O., Melichar, B. and Holcapek, M. Lipidomic characterization of exosomes isolated from human plasma using various mass spectrometry techniques. Biochim. Biophys. Acta, lipids, 1865, 158634 (2020); DOI.
- Pfaff, J., Denton, A.K., Usadel, B. and Pfaff, C. Phosphate starvation causes different stress responses in the lipid metabolism of tomato leaves and roots. Biochim. Biophys. Acta, Lipids,1865, 158763 (2020); DOI.
- Pickens, C.A. and Petritis, K. High resolution mass spectrometry newborn screening applications for quantitative analysis of amino acids and acylcarnitines from dried blood spots. Anal. Chim. Acta, 1120, 85-96 (2020); DOI.
- Pinault, M., Guimaraes, C., Dumas, J.F., Servais, S., Chevalier, S., Besson, P. and Goupille, C. A 1D high performance thin layer chromatography method validated to quantify phospholipids including cardiolipin and monolysocardiolipin from biological samples. Eur. J. Lipid Sci. Technol., 122, 1900240 (2020); DOI.
- Podbielska, M., Szulc, Z.M., Ariga, T., Pokryszko-Dragan, A., Fortuna, W., Bilinska, M., Podemski, R., Jaskiewicz, E., Kurowska, E., Yu, R.K. and Hogan, E.L. Distinctive sphingolipid patterns in chronic multiple sclerosis lesions. J. Lipid Res., 61, 1464-1479 (2020); DOI.
- Prabutzki, P., Leopold, J., Schubert, S., Schiller, J. and Nimptsch, A. De novo synthesis of phospholipids and sphingomyelin in multipotent stromal cells - Monitoring studies by mass spectrometry. Chem. Phys. Lipids, 232, 104965 (2020); DOI.
- Qi, W.S., Wang, Y.J., Cao, Y.Q., Cao, Y.J., Guan, Q., Sun, T.Q., Zhang, L. and Guo, Y.L. Simultaneous analysis of fatty alcohols, fatty aldehydes, and sterols in thyroid tissues by electrospray ionization-ion mobility-mass spectrometry based on charge derivatization. Anal. Chem., 92, 8644-8648 (2020); DOI.
- Qiu, X.M., Zhang, L., Kinoshita, M., Lai, W.L., Zheng, W., Peng, A.J., Li, W.L., Yang, L.H., Zhang, L., Gong, M. and Chen, L. Integrative analysis of non-targeted lipidomic data and brain structural imaging identifies phosphatidylethanolamine associated with epileptogenesis. Metabolomics, 16, 110 (2020); DOI.
- Rach, O., Hadeen, X. and Sachse, D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. Org. Geochem., 142, 103995 (2020); DOI.
- Raetz, M., Bonner, R. and Hopfgartner, G. SWATH-MS for metabolomics and lipidomics: critical aspects of qualitative and quantitative analysis. Metabolomics, 16, 71 (2020); DOI.
- Rahm, M., Merl-Pham, J., Adamski, J. and Hauck, S.M. Time-resolved phosphoproteomic analysis elucidates hepatic 11,12-epoxyeicosatrienoic acid signaling pathways. Prostaglandins Other Lipid Mediators, 146, 106387 (2020); DOI.
- Rahman, M.A., Haron, D.E.M., Hollows, R.J., Ghani, Z.D.F.A., Mohd, M.A., Chai, W.L., Ng, C.C., Lye, M.S., Karsani, S.A., Yap, L.F. and Paterson, I.C. Profiling lysophosphatidic acid levels in plasma from head and neck cancer patients. PeerJ, 8, e9304 (2020); DOI.
- Rajagopalan, N., Lu, Y.P., Burton, I.W., Monteil-Rivera, F., Halasz, A., Reimer, E., Tweidt, R., Brule-Babel, A., Kutcher, H.R., You, F.M., Cloutier, S., Cuperlovic-Culf, M., Hiebert, C.W., McCallum, B.D. and Loewen, M.C. A phenylpropanoid diglyceride associates with the leaf rust resistance Lr34res gene in wheat. Phytochemistry, 178, 112456 (2020); DOI.
- Randolph, C.E., Blanksby, S.J. and McLuckey, S.A. Enhancing detection and characterization of lipids using charge manipulation in electrospray ionization-tandem mass spectrometry. Chem. Phys. Lipids, 232, 104970 (2020); DOI.
- Randolph, C.E., Blanksby, S.J. and McLuckey, S.A. Toward complete structure elucidation of glycerophospholipids in the gas phase through charge inversion ion/ion chemistry. Anal. Chem., 92, 1219-1227 (2020); DOI.
- Randolph, C.E., Fabijanczuk, K.C., Blanksby, S.J. and McLuckey, S.A. Proton transfer reactions for the gas-phase separation, concentration, and identification of cardiolipins. Anal. Chem., 92, 10847-10855 (2020); DOI.
- Randolph, C.E., Marshall, D.L., Blanksby, S.J. and McLuckey, S.A. Charge-switch derivatization of fatty acid esters of hydroxy fatty acids via gas-phase ion/ion reactions. Anal. Chim. Acta, 1129, 31-39 (2020); DOI.
- Randolph, C.E., Shenault, D.M., Blanksby, S.J. and McLuckey, S.A. Structural elucidation of ether glycerophospholipids using gas-phase ion/ion charge inversion chemistry. J. Am. Soc. Mass Spectrom., 31, 1093-1103 (2020); DOI.
- Rattray, J.E. and Smittenberg, R.H. Separation of branched and isoprenoid glycerol dialkyl glycero tetraether (GDGT) isomers in peat soils and marine sediments using reverse phase chromatography. Front. Marine Sci., 7, 539601 (2020); DOI.
- Reinicke, M., Dorow, J., Bischof, K., Leyh, J., Bechmann, I. and Ceglarek, U. Tissue pretreatment for LC-MS/MS analysis of PUFA and eicosanoid distribution in mouse brain and liver. Anal. Bioanal. Chem., 412, 2211-2223 (2020); DOI.
- Ren, F.D., Ding, X.X., Cai, F., Ren, D.B., Yi, L.Z. and Zhang, H. Investigation of metabolic features of patients with coronary heart disease or coronary heart disease-type 2 diabetes mellitus based on ultra-high performance liquid chromatography-high resolution mass spectrometry. Chin. J. Anal. Chem., 48, 49-56 (2020); DOI.
- Ricciardi, A., Piuri, G., Della Porta, M., Mazzucchelli, S., Bonizzi, A., Truffi, M., Sevieri, M., Allevi, R., Corsi, F., Cazzola, R. and Morasso, C. Raman spectroscopy characterization of the major classes of plasma lipoproteins. Vibrat. Spectr., 109, 103073 (2020); DOI.
- Rigano, F., Oteri, M., Micalizzi, G., Mangraviti, D., Dugo, P. and Mondello, L. Lipid profile of fish species by liquid chromatography coupled to mass spectrometry and a novel linear retention index database. J. Sep. Sci., 43, 1773-1780 (2020); DOI.
- Rohrbach, T.D., Boyd, A.E., Grizzard, P.J., Spiegel, S., Allegood, J. and Lima, S. A simple method for sphingolipid analysis of tissues embedded in optimal cutting temperature compound. J. Lipid Res., 61, 953-967 (2020); DOI.
- Rohricht, M., Paschke, K., Sack, P.M., Weinmann, W., Thomasius, R. and Wurst, F.M. Phosphatidylethanol reliably and objectively quantifies alcohol consumption in adolescents and young adults. Alcoholism, Clin. Exp. Res., 44, 2177-2186 (2020); DOI.
- Ross, D.H., Cho, J.H., Zhang, R.T., Hines, K.M. and Xu, L.B. LiPydomics: a Python package for comprehensive prediction of lipid collision cross sections and retention times and analysis of ion mobility-mass spectrometry-based lipidomics data. Anal. Chem., 92, 14967-14975 (2020); DOI.
- Ryu, S.Y., Wendt, G.A., Ernst, R.K. and Goodlett, D.R. MGMS2: Membrane glycolipid mass spectrum simulator for polymicrobial samples. Rapid Commun. Mass Spectrom., 34, e8824 (2020); DOI.
- S'aulis, D., Khoury, E.A., Zabel, M. and Rizzo, W.B. 1-O-Alkylglycerol accumulation reveals abnormal ether glycerolipid metabolism in Sjogren-Larsson syndrome. Mol. Gen. Metab., 131, 253-258 (2020); DOI.
- Saeed, A. and Abolaban, F. Risk estimation of the low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun., 533, 1048-1053 (2020); DOI.
- Samfors, S. and Fletcher, J.S. Lipid diversity in cells and tissue using imaging SIMS. Annu. Rev. Anal. Chem., 13, 249-271 (2020); DOI.
- Sandor, V., Berkics, B.V., Kilar, A., Kocsis, B., Kilar, F. and Dornyei, A. NACE-ESI-MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis, 41, 1178-1188 (2020); DOI.
- Santalova, E.A., Denisenko, V.A. and Dmitrenok, P.S. Structural analysis of oxidized cerebrosides from the extract of deep-sea sponge Aulosaccus sp.: Occurrence of amide-linked allylically oxygenated fatty acids. Molecules, 25, 6047 (2020); DOI.
- Santos, L., Jin, C., Gazarkova, T., Thornell, A., Norlen, O., Saljo, K. and Teneberg, S. Characterization of glycosphingolipids from gastrointestinal stromal tumours. Sci. Rep., 10, 19371 (2020); DOI.
- Sarbu, M., Clemmer, D.E. and Zamfir, A.D. Ion mobility mass spectrometry of human melanoma gangliosides. Biochimie, 177, 226-237 (2020); DOI.
- Sarbu, M., Raab, S., Henderson, L., Fabris, D., Vukelic, Z., Clemmer, D.E. and Zamfir, A.D. Cerebrospinal fluid: Profiling and fragmentation of gangliosides by ion mobility mass spectrometry. Biochimie, 170, 36-48 (2020); DOI.
- Saromi, K., England, P., Tang, W.H., Kostrzewa, M., Corran, A., Woscholski, R. and Larrouy-Maumus, G. Rapid glycosyl-inositol-phospho-ceramide fingerprint from filamentous fungal pathogens using the MALDI Biotyper Sirius system. Rapid Commun. Mass Spectrom., 34, e8904 (2020); DOI.
- Schlame, M., Xu, Y., Erdjument-Bromage, H., Neubert, T.A. and Ren, M.D. Lipidome-wide C-13 flux analysis: a novel tool to estimate the turnover of lipids in organisms and cultures. J. Lipid Res., 61, 95-104 (2020); DOI.
- Schoeny, H., Rampler, E., Hermann, G., Grienke, U., Rollinger, J.M. and Koellensperger, G. Preparative supercritical fluid chromatography for lipid class fractionation-a novel strategy in high-resolution mass spectrometry based lipidomics. Anal. Bioanal. Chem., 412, 2365-2374 (2020); DOI.
- Scholz, K., Lipphardt, A., Wienken, C.M., Tiso, T. and Hayen, H. Hyphenation of supercritical fluid chromatography with different detection methods for identification and quantification of liamocin biosurfactants. J. Chromatogr. A, 1631, 461584 (2020); DOI.
- Scholz, K., Seyfried, M., Brumhard, O., Blank, L.M., Tiso, T. and Hayen, H. Comprehensive liamocin biosurfactants analysis by reversed phase liquid chromatography coupled to mass spectrometric and charged-aerosol detection. J. Chromatogr. A, 1627, 461404 (2020); DOI.
- Schwartz-Narbonne, R., Schaeffer, P., Hopmans, E.C., Schenesse, M., Charlton, E.A., Jones, D.M., Damste, J.S.S., Ul Haque, M.F., Jetten, M.S.M., Lengger, S.K., Murrell, J.C., Normand, P., Nuijten, G.H.L., Talbot, H.M. and Rush, D. A unique bacteriohopanetetrol stereoisomer of marine anammox. Org. Geochem., 143, 103994 (2020); DOI.
- Shen, Y., Xie, H.K., Liu, Z.Y., Lu, T., Yu, Z.L., Zhang, L.H., Zhou, D.Y. and Wang, T. Characterization of glycerophospholipid molecular species in muscles from three species of cephalopods by direct infusion-tandem mass spectrometry. Chem. Phys. Lipids, 226, 104848 (2020); DOI.
- Shiffka, S.J., Jones, J.W., Li, L.H., Farese, A.M., MacVittie, T.J., Wang, H.B., Swaan, P.W. and Kane, M.A. Quantification of common and planar bile acids in tissues and cultured cells. J. Lipid Res., 61, 1524-1535 (2020); DOI.
- Shippar, J., Ellingson, D. and Sabbatini, J. Determination of free and total choline and free and total carnitine in infant formula and adult/pediatric nutritional formula by liquid chromatography/tandem mass spectrometry (HPLC-MS/MS): A multi-laboratory testing study, Final Action 2015.10. J. AOAC Int., 103, 1560-1567 (2020); DOI.
- Shiva, S., Samarakoon, T., Lowe, K.A., Roach, C., Vu, H.S., Colter, M., Porras, H., Hwang, C., Roth, M.R., Tamura, P., Li, M.Y., Schrick, K., Shah, J.T., Wang, X.M., Wang, H.Y. and Welti, R. Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants-Basel, 9, 845 (2020); DOI.
- Si, W., Liu, Y.F., Xiao, Y.S., Guo, Z.M., Jin, G.W., Yan, J.Y., Shen, A.J., Zhou, H., Yang, F. and Liang, X.M. An offline two-dimensional supercritical fluid chromatography x reversed phase liquid chromatography tandem quadrupole time-of-flight mass spectrometry system for comprehensive gangliosides profiling in swine brain extract. Talanta, 208, 120366 (2020); DOI.
- Siddiqui, A.J., Le Senechal, C., Vilain, S. and Bure, C. Effect of matrices and additives on phosphorylated and ketodeoxyoctonic acid lipids A analysis by matrix-assisted laser desorption ionization-mass spectrometry. J. Mass Spectrom., 55, e4600 (2020); DOI.
- Snider, A.J., Seeds, M.C., Johnstone, L., Snider, J.M., Hallmark, B., Dutta, R., Franco, C.M., Parks, J.S., Bensen, J.T., Broeckling, C.D., Mohler, J.L., Smith, G.J., Fontham, E.T.H., Lin, H.K., Bresette, W., Sergeant, S. and Chilton, F.H. Identification of plasma glycosphingolipids as potential biomarkers for prostate cancer (PCa) status. Biomolecules, 10, 1393 (2020); DOI.
- Soltwisch, J., Heijs, B., Koch, A., Vens-Cappell, S., Hohndorf, J. and Dreisewerd, K. MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal. Chem., 92, 8697-8703 (2020); DOI.
- Song, W.S., Park, H.G., Kim, S.M., Jo, S.H., Kim, B.G., Theberge, A.B. and Kim, Y.G. Chemical derivatization-based LC-MS/MS method for quantitation of gut microbial short-chain fatty acids. J. Ind. Eng. Chem., 83, 297-302 (2020); DOI.
- Sorensen, M., Chandler, C.E., Gardner, F.M., Ramadan, S., Khot, P.D., Leung, L.M., Farrance, C.E., Goodlett, D.R., Ernst, R.K. and Nilsson, E. Rapid microbial identification and colistin resistance detection via MALDI-TOF MS using a novel on-target extraction of membrane lipids. Sci. Rep., 10, 21536 (2020); DOI.
- Sorensen, M.J., Miller, K.E., Jorgenson, J.W. and Kennedy, R.T. Ultrahigh-Performance capillary liquid chromatography-mass spectrometry at 35 kpsi for separation of lipids. J. Chromatogr. A, 1611, 460575 (2020); DOI.
- Southam, A.D., Haglington, L.D., Najdekr, L., Jankevics, A., Weber, R.J.M. and Dunn, W.B. Assessment of human plasma and urine sample preparation for reproducible and high-throughput UHPLC-MS clinical metabolic phenotyping. Analyst, 145, 6511-6523 (2020); DOI.
- Specker, J.T., Van Orden, S.L., Ridgeway, M.E. and Prentice, B.M. Identification of phosphatidylcholine isomers in imaging mass spectrometry using gas-phase charge inversion ion/ion reactions. Anal. Chem., 92, 13192-13201 (2020); DOI.
- Staps, P., Rizzo, W.B., Vaz, .FM., Bugiani, M., Giera, M., Heijs, B., van Kampen, A.H.C., Pras-Raves, M.L., Breur, M., Groen, A., Ferdinandusse, S., van der Graaf, M., Van Goethem, G., Lammens, M., Wevers, R.A. and Willemsen, M.A.A.P. Disturbed brain ether lipid metabolism and histology in Sjogren-Larsson syndrome. J. Inher. Metab. Dis., 43, 1265-1278 (2020); DOI.
- Striesow, J., Lackmann, J.W., Ni, Z.X., Wenske, S., Weltmann, K.D., Fedorova, M., von Woedtke, T. and Wende, K. Oxidative modification of skin lipids by cold atmospheric plasma (CAP): A standardizable approach using RP-LC/MS2 and DI-ESI/MS2. Chem. Phys. Lipids, 226, 104786 (2020); DOI.
- Sujarit, K., Mori, M., Dobashi, K., Shiomi, K., Pathom-aree, W. and Lumyong, S. New antimicrobial phenyl alkenoic acids isolated from an oil palm rhizosphere-associated actinomycete, Streptomyces palmae CMU-AB204(T). Microorganisms, 8, 350 (2020); DOI.
- Sun, C.L., Liu, W., Geng, Y.L. and Wang, X. On-tissue derivatization strategy for mass spectrometry imaging of carboxyl-containing metabolites in biological tissues. Anal. Chem., 92, 12126-12131 (2020); DOI.
- Sun, H.H., Peng, X.X., Li, C., Zhang, W.M. and Cao, J. Determination of 2,4-decadienal in edible oils using reversed-phase liquid chromatography and its application as an alternative indicator of lipid oxidation. J. Food Sci., 85, 1418-1426 (2020); DOI.
- Sun, W., Liu, C., Wang, Y.N., Zhou, X., Sui, W.W., Zhang, Y., Zhang, Q.Y., Han, J., Li, X.T. and Han, F. Rhodiola crenulata protects against Alzheimer's disease in rats: A brain lipidomics study by Fourier-transform ion cyclotron resonance mass spectrometry coupled with high-performance reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. Rapid Commun. Mass Spectrom., 35, e8969 (2020); DOI.
- Svetashev, V.I. and Kharlamenko, V.I. Fatty acids of abyssal Echinodermata, the sea star Eremicaster vicinus and the sea urchin Kamptosoma abyssale: a new polyunsaturated fatty acid detected, 22:6(n-2). Lipids, 55, 291-296 (2020); DOI.
- Szczuko, M., Kotlega, D., Palma, J., Zembron-Lacny, A., Tylutka, A., Golab-Janowska, M. and Drozd, A. Lipoxins, RevD1 and 9, 13 HODE as the most important derivatives after an early incident of ischemic stroke. Sci. Rep., 10, 12849 (2020); DOI.
- Szczuko, M., Palma, J., Kikut, J., Komorniak, N. and Zietek, M. Changes of lipoxin levels during pregnancy and the monthly-cycle, condition the normal course of pregnancy or pathology. Inflamm. Res., 69, 869–881 (2020); DOI.
- Tacconelli, S., Contursi, A., Falcone, L., Mucci, M., D'Agostino, I., Fullone, R., Sacco, A., Zucchelli, M., Bruno, A., Ballerini, P., Dovizio, M. and Patrignani, P. Characterization of cyclooxygenase-2 acetylation and prostanoid inhibition by aspirin in cellular systems. Biochem. Pharm., 178, 114094 (2020); DOI.
- Tacconelli, S., Fullone, R., Dovizio, M., Pizzicoli, G., Marschler, S., Bruno, A., Zucchelli, M., Contursi, A., Ballerini, P. and Patrignani, P. Pharmacological characterization of the biosynthesis of prostanoids and hydroxyeicosatetraenoic acids in human whole blood and platelets by targeted chiral lipidomics analysis. Biochim. Biophys. Acta, Lipids, 1865, 158804 (2020); DOI.
- Takashima, S., Toyoshi, K., Yamamoto, T. and Shimozawa, N. Positional determination of the carbon-carbon double bonds in unsaturated fatty acids mediated by solvent plasmatization using LC-MS. Sci. Rep., 10, 12988 (2020); DOI.
- Tang, S.L., Cheng, H.Y. and Yan, X. On-demand electrochemical epoxidation in nano-electrospray ionization mass spectrometry to locate carbon-carbon double bonds. Angew. Chem.-Int. Ed., 59, 209-214 (2020); DOI.
- Tans, R., Bande, R., van Rooij, A., Molloy, B.J., Stienstra, R., Tack, C.J., Wevers, R.A., Wessels, H.J.C.T., Gloerich, J. and van Gool, A.J. Evaluation of cyclooxygenase oxylipins as potential biomarker for obesity- associated adipose tissue inflammation and type 2 diabetes using targeted multiple reaction monitoring mass spectrometry. Prostaglandins Leukotrienes Essential Fatty Acids, 160, 102157 (2020); DOI.
- Tawab, A., Akbar, N., Hasssan, M., Habib, F., Ali, A., Rahman, M., Jabbar, A., Rauf, W. and Iqbal, M. Mass spectrometric analysis of lipid A obtained from the lipopolysaccharide of Pasteurella multocida. RSC Adv., 10, 30917-30933 (2020); DOI.
- Tewari, R., West, S.J., Shayahati, B. and Akimzhanov, A.M. Detection of protein S-acylation using acyl-resin assisted capture. JOVE-J. Vis. Exp., 158, e61016 (2020); DOI.
- Tian, G.L., Xu, F., Jiang, K., Wang, Y.M., Ji, W. and Zhuang, Y.P. Evaluation of a panel of very long-chain lysophosphatidylcholines and acylcarnitines for screening of X-linked adrenoleukodystrophy in China. Clin. Chim. Acta, 503, 157-162 (2020); DOI.
- Tokuoka, S.M., Yasumoto, A., Kita, Y., Shimizu, T., Yatomi, Y. and Oda, Y. Limitations of deuterium-labeled internal standards for quantitative electrospray ionization mass spectrometry analysis of fatty acid metabolites. Rapid Commun. Mass Spectrom., 34, e8814 (2020); DOI.
- Tomeckova, L., Tomcala, A., Obornik, M. and Hampl, V. The lipid composition of Euglena gracilis middle plastid membrane resembles that of primary plastid envelopes. Plant Physiol., 184, 2052-2063 (2020); DOI.
- Topolska, M., Martinez-Montanes, F. and Ejsing, C.S. A simple and direct assay for monitoring fatty acid synthase activity and product-specificity by high-resolution mass spectrometry. Biomolecules, 10, 118 (2020); DOI.
- Triebl, A., Burla, B., Selvalatchmanan, J., Oh, J., Tan, S.H., Chan, M.Y., Mellett, N.A., Meikle, P.J., Torta, F. and Wenk, M.R. Shared reference materials harmonize lipidomics across MS-based detection platforms and laboratories. J. Lipid Res., 61, 105-115 (2020); DOI.
- Tuthill, B.F., Searcy, L.A., Yost, R.A. and Musselman, L.P. Tissue-specific analysis of lipid species in Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI. J. Lipid Res., 61, 275-290 (2020); DOI.
- Vago, R., Ravelli, A., Bettiga, A., Casati, S., Lavorgna, G., Benigni, F., Salonia, A., Montorsi, F., Orioli, M., Ciuffreda, P. and Ottria, R. Urine endocannabinoids as novel non-invasive biomarkers for bladder cancer at early stage. Cancers, 12, 870 (2020); DOI.
- Vahedi, A., Bigdelou, P. and Farnoud, A.M. Quantitative analysis of red blood cell membrane phospholipids and modulation of cell-macrophage interactions using cyclodextrins. Sci. Rep., 10, 15111 (2020); DOI.
- van Harskamp, D., Knottnerus, S.J.G., Visser, G., van Goudoever, J.B. and Schierbeek, H. Development and validation of a gas chromatography-mass spectrometry method to analyze octanoate enrichments at low concentrations in human plasma. Anal. Bioanal. Chem., 412, 5789–5797 (2020); DOI.
- van Rijn, J.H.J., Lankhorst, P.P., Groen, P.B.M., Muntendam, R. and de Souza, A.C. Robust and reliable quantification of phospholipids in edible oils using P-31 NMR spectroscopy. J. Am. Oil Chem. Soc., 97, 253-262 (2020); DOI.
- van Rijt, W.J., Schielen, P.C.J.I., Ozer, Y., Bijsterveld, K., van der Sluijs, F.H., Derks, T.G.J. and Heiner-Fokkema, M.R. Instability of acylcarnitines in stored dried blood spots: the impact on retrospective analysis of biomarkers for inborn errors of metabolism. Int. J. Neonatal Screening, 6, 83 (2020); DOI.
- Vasilopoulou, C.G., Sulek, K., Brunner, A.D., Meitei, N.S., Schweiger-Hufnagel, U., Meyer, S.W., Barsch, A., Mann, M. and Meier, F. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nature Commun., 11, 331 (2020); DOI.
- Vavrusova, A., Vrkoslav, V., Plavka, R., Bosakova, Z. and Cvacka, J. Analysis of (O-acyl) alpha- and omega-hydroxy fatty acids in vernix caseosa by high-performance liquid chromatography-Orbitrap mass spectrometry. Anal. Bioanal. Chem., 412, 2291-2302 (2020); DOI.
- Vigor, C., Oger, C., Reversat, G., Rocher, A., Zhou, B.Q., Linares-Maurizi, A., Guy, A., Bultel-Ponce, V., Galano, J.M., Vercauteren, J., Durand, T., Potin, P., Tonon, T. and Leblanc, C. Isoprostanoid profiling of marine microalgae. Biomolecules, 10, 1073 (2020); DOI.
- Vrkoslav, V., Rumlova, B., Strmen, T. and Cvacka, J. Temperature-programmed capillary high-performance liquid chromatography with atmospheric pressure chemical ionization mass spectrometry for analysis of fatty acid methyl esters. J. Sep. Sci., 43, 2579-2588 (2020); DOI.
- Waktola, H.D., Zeng, A.X., Chin, S.T. and Marriott, P.J. Advanced gas chromatography and mass spectrometry technologies for fatty acids and triacylglycerols analysis. Trends Anal. Chem., 129, 115957 (2020); DOI.
- Waldchen, F., Mohr, F., Wagner, A.H. and Heiles, S. Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Anal. Chem., 92, 14130-14138 (2020); DOI.
- Walter, L., Narayana, V.K., Fry, R., Logan, A., Tull, D. and Leury, B. Milk fat globule size development in the mammary epithelial cell: a potential role for ether phosphatidylethanolamine. Sci. Rep., 10, 12299 (2020); DOI.
- Wang, C., Timari, I., Zhang, B., Li, D.W., Leggett, A., Amer, A.O., Bruschweiler-Li, L., Kopec, R.E. and Bruschweiler, R. COLMAR Lipids web server and ultrahigh-resolution methods for two-dimensional nuclear magnetic resonance- and mass spectrometry-based lipidomics. J. Proteome Res., 19, 1674-1683 (2020); DOI.
- Wang, C.Y., Wang, J.N., Qin, C. and Han, X.L. Analysis of monohexosyl alkyl (alkenyl)-acyl glycerol in brain samples by shotgun lipidomics. Anal. Chim. Acta, 1129, 143-149 (2020); DOI.
- Wang, D.H., Wang, Z. and Brenna, J.T. Gas chromatography chemical ionization mass spectrometry and tandem mass spectrometry for identification and straightforward quantification of branched chain fatty acids in foods. J. Agric. Food Chem., 68, 4973-4980 (2020); DOI.
- Wang, D.H., Wang, Z., Martinez, S., Tobias, H.J. and Brenna, J.T. Fatty acid sentinels as covalently bound randomization standards for triacylglycerol (TAG) quantitative analysis. Rapid Commun. Mass Spectrom., 34, e8891 (2020); DOI.
- Wang, D.H., Wang, Z., Chen, R. and Brenna, J.T. Characterization and semiquantitative analysis of novel ultratrace C10-24 monounsaturated fatty acid in bovine milkfat by solvent-mediated covalent adduct chemical ionization (CACI) MS/MS. J. Agric. Food Chem., 68, 7482-7489 (2020); DOI.
- Wang, D.H., Wang, Z., Cortright, J.R., Le, K.P., Liu, L., Kothapalli, K.S.D. and Brenna, J.T. Identification of polymethylene-interrupted polyunsaturated fatty acids (PMI-PUFA) by solvent-mediated covalent adduct chemical ionization triple quadrupole tandem mass spectrometry. Anal. Chem., 92, 8209-8217 (2020); DOI.
- Wang, H.C., Cui, L., Jia, Y., Gao, Y., Zhang, G.L. and He, C.F. Application of lipidomics to reveal differences of facial skin surface lipids between atopic dermatitis and healthy infants. J. Cosmetic Derm., 19, 1528-1534 (2020); DOI.
- Wang, H.Y.J. and Hsu, F.F. Revelation of acyl double bond positions on fatty acyl coenzyme a esters by MALDI/TOF mass spectrometry. J. Am. Soc. Mass Spectrom., 31, 1047-1057 (2020); DOI.
- Wang, H.Y.J., Tatituri, R.V.V., Goldner, N.K., Dantas, G. and Hsu, F.F. Unveiling the biodiversity of lipid species in Corynebacteria - characterization of the uncommon lipid families in C. glutamicum and pathogen C. striatum by mass spectrometry. Biochimie, 178, 158-169 (2020); DOI.
- Wang, L.N., Li, X.D., Liu, L., Zhang, H.D., Zhang, Y., Chang, Y.H. and Zhu, Q.P. Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chem., 310, 125865 (2020); DOI.
- Wang, L.T., Wang, J.S., Xu, J., Liu, S., Huang, S.Z., Han, S.Q., Liu, Y.Y. and Lv, M. "Highly sensitive qualitative and quantitative detection of saturated fatty aldehydes in edible vegetable oils using a ""turn-on"" fluorescent probe by high performance liquid chromatography." J. Chromatogr. A, 1621, 461063 (2020); DOI.
- Wang, R., Chen, Q.S., Song, Y., Ding, Y., Cong, P.X., Xu, J. and Xue, C.H. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS. Food Chem., 304, 125425 (2020); DOI.
- Wang, T., Li, H.N., Han, Y.Q., Wang, Y.W., Gong, J.C., Gao, K., Li, W.J., Zhang, H.Y., Wang, J.X., Qiu, X.H. and Zhu, T. A rapid and high-throughput approach to quantify non-esterified oxylipins for epidemiological studies using online SPE-LC-MS/MS. Anal. Bioanal. Chem., 412, 7989-8001 (2020); DOI.
- Wang, W.X. and Whitehead, S.N. Imaging mass spectrometry allows for neuroanatomic-specific detection of gangliosides in the healthy and diseased brain. Analyst, 145, 2473-2481 (2020); DOI.
- Wang, X.C., Cong, P.X., Chen, Q.S., Li, Z.J., Xu, J. and Xue, C.H. Characterizing the phospholipid composition of six edible sea cucumbers by NPLC-Triple TOF-MS/MS. J. Food Comp. Anal., 94, 103626 (2020); DOI.
- Wang, X.X., He, Z.A., Li, X., Song, Q.H., Zou, X.W., Song, X.Y. and Feng, L. Comparison of pretreatment methods in lipid analysis and ultra-performance liquid chromatography-mass spectrometry analysis of archaea. Chin. J. Chromatogr., 38, 914-922 (2020); DOI.
- Wang, Y., Yutuc, E. and Griffiths, W.J. Standardizing and increasing the utility of lipidomics: a look to the next decade. Expert Rev. Proteomics, 17, 699-717 (2020); DOI.
- Wang, Y.T., Hinz, S., Uckermann, O., Honscheid, P., von Schonfels, W., Burmeister, G., Hendricks, A., Ackerman, J.M., Baretton, G.B., Hampe, J., Brosch, M., Schafmayer, C., Shevchenko, A. and Zeissig, S. Shotgun lipidomics-based characterization of the landscape of lipid metabolism in colorectal cancer. Biochim. Biophys. Acta, Lipids, 1865, 158579 (2020); DOI.
- Watkins, P.J. Characterization of four alkyl-branched fatty acids as methyl, ethyl, propyl, and butyl esters using gas chromatography-quadrupole time of flight mass spectrometry. Anal. Sci., 36, 425-429 (2020); DOI.
- Wei, B.F. and Wang, S.Y. Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography. J. Chromatogr. A, 1625, 461326 (2020); DOI.
- Wei, J.T., Xiang, L., Li, X.N., Song, Y.Y., Yang, C.X., Ji, F.F., Chung, A.C.K., Li, K., Lin, Z. and Cai, Z.W. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal. Chim. Acta, 1100, 66-74 (2020); DOI.
- Wiedmaier-Czerny, N., Müller, M. and Vetter, W. Heart-cut two-dimensional countercurrent chromatography for the isolation of a furan fatty acid triacylglycerol from latex gloves and identification of further lipid compounds. J. Am. Oil Chem. Soc., 97, 463-474 (2020); DOI.
- Wilkins, J.A., Kaasik, K., Chalkley, R.J. and Burlingame, A.L. Characterization of prenylated C-terminal peptides using a thiopropyl-based capture technique and LC-MS/MS. Mol. Cell. Proteom., 19, 1005-1016 (2020); DOI.
- Wolrab, D., Chocholouskova, M., Jirasko, R., Peterka, O. and Holcapek, M. Validation of lipidomic analysis of human plasma and serum by supercritical fluid chromatography-mass spectrometry and hydrophilic interaction liquid chromatography-mass spectrometry. Anal. Bioanal. Chem., 412, 2375-2388 (2020); DOI.
- Wu, C., Zhang, Q.Q., Yang, F.Y., Song, M.N., Sun, Y.L., Zhang, Y.Y., Li, X.B., Ge, D., Liu, N. and Zhang, H. New oxylipins from Siegesbeckia glabrescens as potential antibacterial agents. Fitoterapia, 145, 104613 (2020); DOI.
- Wu, Q., Huang, Z.H., Wang, Y., Zhang, Z.M. and Lu, H.M. Absolute quantitative imaging of sphingolipids in brain tissue by exhaustive liquid microjunction surface sampling-liquid chromatography-mass spectrometry. J. Chromatogr. A, 1609, 460436 (2020); DOI.
- Wu, Q., Rubakhin, S.S. and Sweedler, J.V. Quantitative imprint mass spectrometry imaging of endogenous ceramides in rat brain tissue with kinetic calibration. Anal. Chem., 92, 6613-6621 (2020); DOI.
- Wu, W.C., Dijkstra, P. and Dippold, M.A. C-13 analysis of fatty acid fragments by gas chromatography mass spectrometry for metabolic flux analysis. Geochim. Cosmochim. Acta, 284, 92-106 (2020); DOI.
- Xi, Y., Tu, A.Q. and Muddiman, D.C. Lipidomic profiling of single mammalian cells by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI). Anal. Bioanal. Chem., 412, 8211-8222 (2020); DOI.
- Xia, F.B., He, C.W., Ren, M., Xu, F.G. and Wan, J.B. Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal. Chim. Acta, 1120, 24-35 (2020); DOI.
- Xia, T., Ren, H.L., Zhang, W.P. and Xia, Y. Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on C = C location level. Anal. Chim. Acta, 1128, 107-115 (2020); DOI.
- Xiao, K., Gong, C., Guo, Q.S. and Xu, X. Simultaneous determination of fatty acids at sn-1,3 and sn-2 of triglyceride in edible oils by quantitative C-13-nuclear magnetic resonance. Chin. J. Anal. Chem., 48, 802-810 (2020); DOI.
- Xie, X.B., Zhao, J., Lin, M., Zhang, J.L. and Xia, Y. Profiling of cholesteryl esters by coupling charge-tagging paterno-buchi reaction and liquid chromatography-mass spectrometry. Anal. Chem., 92, 8487-8496 (2020); DOI.
- Xie, Y., Wu, B.F., Wu, Z.Y., Tu, X.H., Xu, S.L., Lv, X., Yin, H.Q., Xiang, J.Q., Chen, H. and Wei, F. Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem., 319, 126547 (2020); DOI.
- Xu, L., Hu, C.F., Liu, Y.G., Li, S.M., Vetter, W., Yin, H.Y. and Wang, Y.H. Development of a sensitive and quantitative method for the identification of two major furan fatty acids in human plasma. J. Lipid Res., 61, 560-569 (2020); DOI.
- Xu, M.M., Legradi, J. and Leonards, P. Evaluation of LC-MS and LCxLC-MS in analysis of zebrafish embryo samples for comprehensive lipid profiling. Anal. Bioanal. Chem., 412, 4313–4325 (2020); DOI.
- Xu, S.L., Wu, B.F., Oresic, M., Xie, Y., Yao, P., Wu, Z.Y., Lv, X., Chen, H. and Wei, F. Double derivatization strategy for high-sensitivity and high-coverage localization of double bonds in free fatty acids by mass spectrometry. Anal. Chem., 92, 6446-6455 (2020); DOI.
- Xuan, Q.H., Zheng, F.J., Yu, D., Ouyang, Y., Zhao, X.J., Hu, C.X. and Xu, G.W. Rapid lipidomic profiling based on ultra-high performance liquid chromatography-mass spectrometry and its application in diabetic retinopathy. Anal. Bioanal. Chem., 412, 3585-3594 (2020); DOI.
- Yamada, H., Kumagai, K., Uemura, A. and Yuki, S. Euphausia pacifica as a source of 8(R)-hydroxy-eicosapentaenoic acid (8R-HEPE), 8(R)-hydroxy-eicosatetraenoic acid (8R-HETE) and 10(R)-hydroxy-docosahexaenoic acid (10R-HDHA). Biosci. Biotechn. Biochem., 84, 455-462 (2020); DOI.
- Yan, X.J., Markey, S.P., Marupaka, R., Dong, Q., Cooper, B.T., Mirokhin, Y.A., Wallace, W.E. and Stein, S.E. Mass spectral library of acylcarnitines derived from human urine. Anal. Chem., 92, 6521-6528 (2020); DOI.
- Yang, H., Chandler, C.E., Jackson, S.N., Woods, A.S., Goodlett, D.R., Ernst, R.K. and Scott, A.J. On-tissue derivatization of lipopolysaccharide for detection of lipid A using MALDI-MSI. Anal. Chem., 92, 13667-13671 (2020); DOI.
- Yang, H., Jackson, S.N., Woods, A.S., Goodlett, D.R., Ernst, R.K. and Scott, A.J. Streamlined analysis of cardiolipins in prokaryotic and eukaryotic samples using a norharmane matrix by MALDI-MSI. J. Am. Soc. Mass Spectrom., 31, 2495-2502 (2020); DOI.
- Yang, L., Nie, H.G., Zhao, F., Song, S.Y., Meng, Y., Bai, Y. and Liu, H.W. A novel online two-dimensional supercritical fluid chromatography/reversed phase liquid chromatography-mass spectrometry method for lipid profiling. Anal. Bioanal. Chem., 412, 2225–2235 (2020); DOI.
- Yasuda, S., Okahashi, N., Tsugawa, H., Ogata, Y., Ikeda, K., Suda, W., Arai, H., Hattori, M. and Arita, M. Elucidation of gut microbiota-associated lipids using LC-MS/MS and 16S rRNA sequence analyses. iScience, 23, 101841 (2020); DOI.
- Yatim, A.R.M., Zulkifli, W.N.F.W.M., Majid, A.M.S., Foster, J.L. and Hayes, D.G. 3-Hydroxypicolinic Acid as an effective matrix for sophorolipid structural elucidation using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Surfact. Deterg., 23, 565-571 (2020); DOI.
- Ye, F.Y., Zhong, Q.S., Liang, Y.S. and Zhou, T. Determination of lipid mediators in breast cancer cells using lyophilization-supercritical fluid extraction online coupled with supercritical fluid chromatography-quadrupole tandem mass spectrometry. J. Sep. Sci., 43, 1800-1807 (2020); DOI.
- Yoshinaga, K., Ishikawa, H., Taira, S., Yoshinaga-Kiriake, A., Usami, Y. and Gotoh, N. Selective visualization of administrated arachidonic and docosahexaenoic acids in brain using combination of simple stable isotope-labeling technique and imaging mass spectrometry. Anal. Chem., 92, 8685-8690 (2020); DOI.
- Yu, D.Y., Boughton, B.A., Hill, C.B., Feussner, I., Roessner, U. and Rupasinghe, T.W.T. Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front. Plant Sci., 11, 1 (2020); DOI.
- Yu, H.X., Villanueva, N., Bittar, T., Arsenault, E., Labonte, B. and Huan, T. Parallel metabolomics and lipidomics enables the comprehensive study of mouse brain regional metabolite and lipid patterns. Anal. Chim. Acta, 1136, 168-177 (2020); DOI.
- Yu, Y.X., Li, G.L., Wu, D., Liu, J.H., Chen, J., Hu, N., Wang, H.L., Wang, P.X. and Wu, Y.N. Thiol radical-based chemical isotope labelling for sterols quantitation through high performance liquid chromatography-tandem mass spectrometry analysis. Anal. Chim. Acta, 1097, 110-119 (2020); DOI.
- Yuan, T.F., Le, J., Wang, S.T. and Li, Y. An LC/MS/MS method for analyzing the steroid metabolome with high accuracy and from small serum samples. J. Lipid Res., 61, 580-586 (2020); DOI.
- Yuan, W.J., Wang, J., Zhang, Y. and Lu, H.J. Sample preparation approaches for qualitative and quantitative analysis of lipid-derived electrophile modified proteomes by mass spectrometry. Molecular Omics, 16, 511-520 (2020); DOI.
- Yutuc, E., Angelini, R., Baumert, M., Mast, N., Pikuleva, I., Newton, J., Clench, M.R.., Skibinski, D.O.F., Howell, O.W., Wang, Y. and Griffiths, W.J. Localization of sterols and oxysterols in mouse brain reveals distinct spatial cholesterol metabolism. Proc. Natl. Acad. Sci. USA, 117, 5749-5760 (2020); DOI.
- Zha, S.J., Kuwano, K., Shibahara, T. and Ishibashi, F. Algicidal hydroxylated C18 unsaturated fatty acids from the red alga Tricleocarpa jejuensis: Identification, synthesis and biological activity. Fitoterapia, 45, 104639 (2020); DOI.
- Zhang, C.P., Hu, Z.J., Wang, K., Yang, L.J., Li, Y., Schluter, H., Yang, P.Y., Hong, J.X. and Yu, H.X. Lipidomic profiling of virus infection identifies mediators that resolve herpes simplex virus-induced corneal inflammatory lesions. Analyst, 145, 3967-3976 (2020); DOI.
- Zhang, L.J., Ma, F., Qi, A., Liu, L.L., Zhang, J.J., Xu, S.M., Zhong, Q.S., Chen, Y.S., Zhang, C.Y. and Cai, C. Integration of ultra-high-pressure liquid chromatography-tandem mass spectrometry with machine learning for identifying fatty acid metabolite biomarkers of ischemic stroke. Chem. Commun., 56, 6656-6659 (2020); DOI.
- Zhang, T.Q., Kuroda, H., Nagano, K., Terada, S., Gao, J.Q., Harada, K., Hirata, K., Tsujino, H., Higashisaka, K., Matsumoto, H. and Tsutsumi, Y. Development and evaluation of a simultaneous and efficient quantification strategy for final prostanoid metabolites in urine. Prostaglandins Leukotrienes Essential Fatty Acids, 157, 102032 (2020); DOI.
- Zhang, G.Z., Keener, J.E. and Marty, M.T. Measuring remodeling of the lipid environment surrounding membrane proteins with lipid exchange and native mass spectrometry. Anal. Chem., 92, 5666-5669 (2020); DOI.
- Zhang, Q., Yang, X., Wang, Q., Zhang, Y.W., Gao, P., Li, Z.J., Liu, R., Xu, H.R., Bi, K.S. and Li, Q. 'Modeling-prediction' strategy for deep profiling of lysophosphatidic acids by liquid chromatography-mass spectrometry: exploration biomarkers of breast cancer. J. Chromatogr. A, 1634, 461634 (2020); DOI.
- Zhang, W.P., Shang, B. and Xia, Y. Comprehensive characterization of phospholipid isomers in human platelets. J. Anal. Testing, 4, 210–216 (2020); DOI.
- Zhang, W.P., Shang, B., Ouyang, Z. and Xia, Y. Enhanced phospholipid isomer analysis by online photochemical derivatization and RPLC-MS. Anal. Chem., 92, 6719-6726 (2020); DOI.
- Zhang, X.P., Ren, X., Chingin, K., Xu, J.Q., Yan, X. and Chen, H.W. Mass spectrometry distinguishing C=C location and cis/trans isomers: A strategy initiated by water radical cations. Anal. Chim. Acta, 1139, 146-154 (2020); DOI.
- Zhao, J., Xie, X.B., Lin, Q.H., Ma, X.X., Su, P. and Xia, Y. Next-generation Paterno-Buchi reagents for lipid analysis by mass spectrometry. Anal. Chem., 92, 13470-13477 (2020); DOI.
- Zhao, X., Wu, G., Zhang, W.P., Dong, M.Q. and Xia, Y. Resolving modifications on sphingoid base and N-acyl chain of sphingomyelin lipids in complex lipid extracts. Anal. Chem., 92, 14775-14782 (2020); DOI.
- Zhao, X.E., Zhu, S.Y. and Liu, H.W. Recent progresses of derivatization approaches in the targeted lipidomics analysis by mass spectrometry. J. Sep. Sci., 43, 1838-1846 (2020); DOI.
- Zheng, H., Yang, R., Wang, Z., Wang, J., Zhang, J.L. and Sun, H.M. Characterization of pharmaceutic structured triacylglycerols by high-performance liquid chromatography/tandem high-resolution mass spectrometry and its application to structured fat emulsion injection. Rapid Commun. Mass Spectrom., 34, e8557 (2020); DOI.
- Zheng, J.M., Zhang, L., Johnson, M., Mandal, R. and Wishart, D.S. Comprehensive targeted metabolomic assay for urine analysis. Anal. Chem., 92, 10627-10634 (2020); DOI.
- Zheng, J.Y., Jin, Y.Y., Shi, Z.Q., Zhou, J.L., Liu, L.F. and Xin, G.Z. Fluorous-paired derivatization approach towards highly sensitive and accurate determination of long chain unsaturated fatty acids by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta, 1136, 187-195 (2020); DOI.
- Zhu, Q.F., An, N. and Feng, Y.Q. In-depth annotation strategy of saturated hydroxy fatty acids based on their chromatographic retention behaviors and MS fragmentation patterns. Anal. Chem., 92, 14528-14535 (2020); DOI.
- Zhu, Q.F., Yan, J.W., Ni, J. and Feng, Y.Q. FAHFA footprint in the visceral fat of mice across their lifespan. Biochim. Biophys. Acta, Lipids, 1865, 158639 (2020); DOI.
- Zhu, Y.L; Wang, W.H. and Yang, Z.B. Combining mass spectrometry with Paterno-Buchi reaction to determine double-bond positions in lipids at the single-cell level. Anal. Chem., 92, 11380-11387 (2020); DOI.
- Züllig, T., Trötzmüller, M. and Köfeler, H.C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem., 412, 2191-2209 (2020); DOI.
© Data compiled by Bill Christie | ||
Updated: August 23rd, 2023 | Contact/credits/disclaimer |