Bibliography - Mass Spectrometry of Fatty Acid Derivatives
2010 Onwards
The following references to publications dealing with mass spectrometry of fatty acids were collected as part of our regular literature searches for research purposes. Only papers where the primary purpose is fatty acid analysis and illustrate or otherwise describe mass spectra may be included. While the list is fairly comprehensive, it is certainly not exhaustive - we do our best. For convenience, the data are divided into four sections according to date of publication (see main menu), and DOI addresses are listed from 2014 onwards. References are listed alphabetically according to the first author.
- Abdel-Mawgoud, A.M., Lepine, F. and Deziel, E. A chiral high-performance liquid chromatography-tandem mass spectrometry method for the stereospecific analysis of enoyl-coenzyme A hydratases/isomerases. J. Chromatogr. A, 1306, 37-43 (2013).
- Akinwole, P.O., Lefevre, E., Powell, M.J. and Findlay, R.H. Unique odd-chain polyenoic phospholipid fatty acids present in Chytrid fungi. Lipids, 49, 933-942 (2014); DOI.
- Aldai, N., Delmonte, P., Alves, S.P., Bessa, R.J.B. and Kramer, J.K.G. Evidence for the initial steps of DHA biohydrogenation by mixed ruminal microorganisms from sheep involves formation of conjugated fatty acids. J. Agric. Food Chem., 66, 842-855 (2018); DOI.
- Alves, S.P. and Bessa, R.J.B. The trans-10,cis-15 18:2: a missing intermediate of trans-10 shifted rumen biohydrogenation pathway? Lipids,6, 527-541 (2014); DOI.
- Alves, S.P., Araujo, C.M., Queiroga, R.C., Madruga, M.S., Parente, M.O.M., Medeiros, A.N. and Bessa, R.J.B. New insights on the metabolism of ricinoleic acid in ruminants. J. Dairy Sci., 100, 8018-8032 (2017); DOI.
- Alves, S.P., Maia, M.R.G., Bessa, R.J.B., Fonseca, A.J.M. and Cabrita, A.R.J. Identification of C18 intermediates formed during stearidonic acid biohydrogenation by rumen microorganisms in vitro. Lipids, 47, 171-183 (2012).
- Alves, S.P., Tyburczy,C., Lawrence,P., Bessa,R.J.B. and Brenna,J.T. Acetonitrile covalent adduct chemical ionization tandem mass spectrometry of non-methylene-interrupted pentaene fatty acid methyl esters. Rapid Commun. Mass Spectrom., 25, 1933-1941 (2011).
- Amayo, K.O., Raab, A., Krupp, E.M. and Feldmann, J. Identification of arsenolipids and their degradation products in cod-liver oil. Talanta, 118, 217-223 (2014); DOI.
- Amayo, K.O., Raab, A., Krupp, E.M., Gunnlaugsdottir, H. and Feldmann, J. Novel identification of arsenolipids using chemical derivatizations in conjunction with RP-HPLC-ICPMS/ESMS. Anal. Chem., 85, 9321-9327 (2013).
- Arroyo-Abad, U., Lischka, S., Piechotta, C., Mattusch, J. and Reemtsma, T. Determination and identification of hydrophilic and hydrophobic arsenic species in methanol extract of fresh cod liver by RP-HPLC with simultaneous ICP-MS and ESI-Q-TOF-MS detection. Food Chem., 141, 3093-3102 (2013).
- Asai, T., Nakamura, Y., Hirayama, Y., Ohyama, K. and Fujimoto, Y. Cyclic glycolipids from glandular trichome exudates of Cerastium glomeratum. Phytochemistry, 82, 149-157 (2012).
- Astudillo, A.M., Meana, C., Guijas, C., Pereira, L., Lebrero, P., Balboa, M.A. and Balsinde, J. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells. J. Lipid Res., 59, 237-249 (2018); DOI.
- Baba, T., Campbell, J.L., Le Blanc, J.C.Y. and Baker, P.R.S. Distinguishing cis and trans isomers in intact complex lipids using electron impact excitation of ions from organics mass spectrometry. Anal. Chem., 89, 7307-7315 (2017); DOI.
- Back, K.Y., Sohn,H.R., Hou,C.T. and Kim,H.R. Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3. J. Agric. Food Chem., 59, 9652-9657 (2011).
- Bendig, P., Maier, L., Lehnert, K., Knapp, H. and Vetter, W. Mass spectra of methyl esters of brominated fatty acids and their presence in soft drinks and cocktail syrups. Rapid Commun. Mass Spectrom., 27, 1083-1089 (2013).
- Berdeaux, O., Fontagne, S., Semon, E., Velasco, J., Sebedio, J.L. and Dobarganes, C. A detailed identification study on high-temperature degradation products of oleic and linoleic acid methyl esters by GC-MS and GC-FTIR. Chem. Phys. Lipids, 165, 338-347 (2012).
- Berdeaux, O., Gregoire,S., Fournier,C., Christie,W.W., Lambelet,P. and Sebedio,J.L. Detection of lactobacillic acid in low erucic rapeseed oil - A note of caution when quantifying cyclic fatty acid monomers in vegetable oils. Chem. Phys. Lipids, 163, 698-702 (2010).
- Berdeaux, O., Juaneda,P., Martine,L., Cabaret,S., Bretillon,L. and Acar,N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A, 1217, 7738-7748 (2010).
- Bhamidi, S., Scherman,M.S., Jones,V., Crick,D.C., Belisle,J.T., Brennan,P.J. and McNeil,M.R. Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis. J. Biol. Chem., 286, 23168-23177 (2011).
- Bian, X.Q., Sun, B.Q., Zheng, P.Y., Li, N. and Wu, J.L. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: Application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal. Chim. Acta, 989, 59-70 (2017); DOI.
- Bierhanzl, V.M., Bursova, M., Ston, M., Cabala, R. and Seydlova, G. Simultaneous analysis of polar and non-polar components of cell membrane phospholipids by GC-MS. Chem. Papers, 70, 1309-1315 (2016); DOI.
- Black, B.A., Sun, C.X., Zhao, Y.Y., Ganzle, M.G. and Curtis, J.M. Antifungal lipids produced by lactobacilli and their structural identification by normal phase LC/atmospheric pressure photoionization-MS/MS. J. Agric. Food Chem., 61, 5338-5346 (2013).
- Bollinger, J.G., Rohan, G., Sadilek, M. and Gelb, M.H. LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity. J. Lipid Res., 54, 3523-3530 (2013).
- Bombarda, I., Zongo, C., McGill, C.R., Doumenq, P. and Fogliani, B. Fatty acids profile of Alphitonia neocaledonica and Grevillea exul var. rubiginosa seed oils, occurrence of an omega5 series J. Am. Oil Chem. Soc., 87, 981-986 (2010); DOI.
- Borden, S.A., Damer, H.N., Krogh, E.T. and Gill, C.G. Direct quantitation and characterization of fatty acids in salmon tissue by condensed phase membrane introduction mass spectrometry (CP-MIMS) using a modified donor phase. Anal. Bioanal. Chem., 411, 291-303 (2019); DOI.
- Bouatra, S., Aziat, F., Mandal, R., Guo, A.C., Wilson, M.R., Knox, C., Bjorndahl, T.C., Krishnamurthy, R., Saleem, F., Liu, P., Dame, Z.T., Poelzer, J., Huynh, J., Yallou, F.S., Psychogios, N., Dong, E., Bogumil, R., Roehring, C. and Wishart, D.S. The human urine metabolome. PLOS One, 8, e73076 (2013).
- Bowen, C.L., Kehler,J. and Evans,C.A. Development and validation of a sensitive and selective UHPLC-MS/MS method for simultaneous determination of both free and total eicosapentaeonic acid and docosahexenoic acid in human plasma. J. Chromatogr. B, 878, 3125-3133 (2010).
- Brenna, J.T. Fatty acid analysis by high resolution gas chromatography and mass spectrometry for clinical and experimental applications. Curr. Opin. Clin. Nutr. Metab. Care, 16, 548-554 (2013).
- Bridoux, M.C., Sobiechowska, M., Briggs, R.G., Perez-Fuentetaja, A. and Alben, K.T. Separation and identification of fatty acid esters of algal carotenoid metabolites in the freshwater mussel Dreissena bugensis, by liquid chromatography with ultraviolet/visible wavelength and mass spectrometric detectors in series. J. Chromatogr. A, 1513, 93-106 (2017); DOI.
- Bromke, M.A., Hochmuth, A., Tohge, T., Fernie, A.R., Giavalisco, P., Burgos, A., Willmitzer, L. and Brotman, Y. Liquid chromatography high-resolution mass spectrometry for fatty acid profiling. Plant J., 81, 529-536 (2015); DOI.
- Butovich, I.A. On the presence of (O-acyl)-omega-hydroxy fatty acids and of their esters in human meibomian gland secretions. Invest. Ophthalmol. Vis. Sci., 52, 639-641 (2011).
- Butovich, I.A., Lu, H., McMahon, A. and Eule, J.C. Toward an animal model of the human tear film: biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes. Invest. Ophthalmol. Vis. Sci., 53, 6881-6896 (2012).
- Buyer, J.S. and Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol., 61, 127-130 (2012).
- Cai, J.W., Zhang, J.T., Tian, Y., Zhang, L.M., Hatzakis, E., Krausz, K.W., Smith, P.B., Gonzalez, F.J. and Patterson, A.D. Orthogonal comparison of GC-MS and H-1 NMR spectroscopy for short chain fatty acid quantitation. Anal. Chem., 89, 7900-7906 (2017); DOI.
- Caligiani, A., Nocetti, M., Lolli, V., Marseglia, A. and Palla, G. Development of a quantitative GC-MS method for the detection of cyclopropane fatty acids in cheese as new molecular markers for Parmigiano Reggiano authentication. J. Agric. Food Chem., 64, 4158-4164 (2016); DOI.
- Carballeira, N.M., Montano, N., Amador, L.A., Rodriguez, A.D., Golovko, M.Y., Golovko, S.A., Reguera, R.M., Alvarez-Velilla, R. and Balana-Fouce, R. Novel very long-chain alpha-methoxylated Delta 5,9 fatty acids from the sponge Asteropus niger are effective inhibitors of topoisomerases IB. Lipids, 51, 245-256 (2016); DOI.
- Chakravartula, S.V.S. and Balazy, M. Characterization of nitro arachidonic acid and nitro linoleic acid by mass spectrometry. Anal. Letts, 45, 2412-2424 (2012).
- Chang,K.J.L., Mansour,M.P., Dunstan,G.A., Blackburn,S.I., Koutoulis,A. and Nichols,P.D. Odd-chain polyunsaturated fatty acids in thraustochytrids. Phytochemistry, 72, 1460-1465 (2011).
- Cherif, A., Boukhchina, S. and Angers, P. GC-MS characterization of cyclic fatty acid monomers and isomers of unsaturated fatty acids formed during the soybean oil heating process. Eur. J. Lipid Sci. Technol., 121, 1800296 (2019); DOI.
- Chiominto, A., Marcelloni, A.M., Tranfo, G., Paba, E. and Paci, E. Validation of a high performance liquid chromatography-tandem mass spectrometry method for beta-hydroxy fatty acids as environmental markers of lipopolysaccharide. J. Chromatogr. A, 1353, 65-70 (2014); DOI.
- Chivall,D., Berstan, R., Bull, I.D. and Evershed, R.P. Isotope effects associated with the preparation and methylation of fatty acids by boron trifluoride in methanol for compound-specific stable hydrogen isotope analysis via gas chromatography/thermal conversion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom., 26, 1232-1240 (2012).
- Christie, W.W. and Han, X. Lipid Analysis - Isolation, Separation, Identification and Lipidomic Analysis (4th edition), 446 pages (Oily Press, Woodhead Publishing and now Elsevier) (2010) - see Science Direct.
- Choma,A. and Komaniecka,I. Straight and branched (omega-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A. Acta Biochim. Polon., 58, 51-57 (2011).
- Chonglo, L., Tian, R., Shi, R.Y., Ouyang, Z. and Xia, Y. Coupling the Paterno-Buchi (PB) reaction with mass spectrometry to study unsaturated fatty acids in mouse model of multiple sclerosis. Front. Chem., 7, 807 (2019); DOI.
- Chvalova, D. and Spicka, J. Identification of furan fatty acids in the lipids of common carp (Cyprinus carpio L.). Food Chem., 200, 183-188 (2016); DOI.
- Cody, R.B., McAlpin, C.R., Cox, C.R., Jensen, K.R. and Voorhees, K.J. Identification of bacteria by fatty acid profiling with direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom., 29, 2007-2012 (2015); DOI.
- Company-Arumi, D., Figueras, M., Salvado, V., Molinas, M., Serra, O. and Antico, E. The identification and quantification of suberin monomers of root and tuber periderm from potato (Solanum tuberosum) as fatty acyl tert-butyldimethylsilyl derivatives. Phytochem. Anal., 27, 326-335 (2016); DOI.
- Cossignani, L., Giua, L., Lombardi, G., Simonetti, M.S., Damiani, P. and Blasi, F. Analysis of CLA isomer distribution in nutritional supplements by single column silver-ion HPLC. J. Am. Oil Chem. Soc., 90, 327-335 (2013).
- Cutignano,A., Lamari,N., d'Ippolito,G., Manzo,E., Cimino,G. and Fontana,A. Lipoxygenase products in marine diatoms: a concise analytical method to explore the functional potential of oxylipins. J. Phycol., 47, 233-243 (2011).
- Dagorn, F., Dumay, J., Wielgosz-Collin, G., Rabesaotra, V., Viau, M., Monniot, C., Biard, J.F. and Barnathan, G. Phospholipid distribution and phospholipid fatty acids of the tropical tunicates Eudistoma sp. and Leptoclinides uniorbis Lipids, 45, 253-261 (2010); DOI.
- Damsté, J.S.S., Rijpstra, W.I.C., Hopmans, E.C., Foesel, B.U., Wüst, P.K., Overmann, J., Tank, M., Bryant, D.A., Dunfield, P.F., Houghton, K. and Stott, M.B. Ether- and ester-bound iso-diabolic acid and other lipids in members of Acidobacteria Subdivision 4. Appl. Environm. Microbiol., 80, 5207-5218 (2014); DOI.
- Damsté, J.S.S., Rijpstra, W.I.C., Hopmans, E.C., Weijers, J.W.H., Foesel, B.U., Overmann, J. and Dedysh, S.N. 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Appl. Environm. Microbiol., 77, 4147-4154 (2011).
- Dasilva, G., Pazos, M., Gallardo, J.M., Rodriguez, I., Cela, R. and Medina, I. Lipidomic analysis of polyunsaturated fatty acids and their oxygenated metabolites in plasma by solid-phase extraction followed by LC-MS. Anal. Bioanal. Chem., 406, 2827-2839 (2014); DOI.
- de Santana,A.P., Noleto, G.R., Gorin, P.A.J., de Souza, L.M., Iacomini, M. and Sassaki, G.L. GC-MS detection and quantification of lipopolysaccharides in polysaccharides through 3-O-acetyl fatty acid methyl esters. Carbohydrate Polymers, 87, 2730-2734 (2012).
- Derogis, P.B.M.C., Freitas, F.P., Marques, A.S.F., Cunha, D., Appolinario, P.P., de Paula, F., Lourenco, T.C., Murgu, M., Di Mascio, P., Medeiros, M.H.G. and Miyamoto, S. The development of a specific and sensitive LC-MS-based method for the detection and quantification of hydroperoxy- and hydroxydocosahexaenoic acids as a tool for lipidomic analysis. PLOS One, 8, e77561 (2013).
- Desmarais, A., Sebedio, J.L., Belkacemi, K., Arul, J. and Angers, P. Formation kinetics of monomeric cyclic fatty acid methyl esters of alpha-linolenic acid: effects of mono cis/trans isomers. J. Am. Oil Chem. Soc., in press (2020); DOI.
- Destaillats,F., Guitard,M. and Cruz-Hernandez,C. Identification of Delta 6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. J. Chromatogr. A, 1218, 9384-9389 (2011).
- Dias, A.C.D.S., Ruiz, N., Couzinet-Mossion, A., Bertrand, S., Duflos, M., Pouchus, Y.-F., Barnathan, G., Nazi, H. and Wielgosz-Collin, G. The marine-derived fungus Clonostachys rosea, source of a rare conjugated 4-me-6e,8e-hexadecadienoic acid reducing viability of MCF-7 breast cancer cells and gene expression of lipogenic enzymes. Mar. Drugs, 13, 4934-4948 (2015); DOI.
- Dobson, G., Vasukuttan, V. and Alexander, C.J. Evaluation of different protocols for the analysis of lipophilic plant metabolites by gas chromatography-mass spectrometry using potato as a model. Metabolomics, 8, 880-893 (2012).
- Doomun, S.N.E., Loke, S., O'Callaghan, S. and Callahan, D.L. A simple method for measuring carbon-13 fatty acid enrichment in the major lipid classes of microalgae using GC-MS. Metabolites, 6, 42 (2016); DOI.
- Dowd, M.K. Identification of the unsaturated heptadecyl fatty acids in the seed oils of Thespesia populnea and Gossypium hirsutum. J. Am. Oil Chem. Soc., 89, 1599-1609 (2012).
- Ecker, J. and Liebisch, G. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog. Lipid Res., 54, 14-31 (2014); DOI.
- Eibler, D., Hammerschick, T., Buck, L. and Vetter, W. Up to 21 different sulfur-heterocyclic fatty acids in rapeseed and mustard oil. J. Am. Oil Chem. Soc., 94, 893-903 (2017); DOI.
- Eibler, D., Seyfried, C. and Vetter, W. Enantioselectivity of anteiso-fatty acids in hitherto uninspected sample matrices. J. Chromatogr. B, 1061, 233-239 (2017); DOI.
- Eibler, D., Seyfried, C., Kaffarnik, S. and Vetter, W. anteiso-Fatty Acids in Brussels sprouts (Brassica oleracea var. gemmifera L.): quantities, enantioselectivities, and stable carbon isotope ratios. J. Agric. Food Chem., 63, 8921-8929 (2015); DOI.
- Fardin-Kia, A.R. Preparation, isolation and identification of non-conjugated C18:2 fatty acid isomers. Chem. Phys. Lipids, 201, 50-58 (2016); DOI.
- Fardin-Kia, A.R., Delmonte, P., Kramer, J.K.G., Jahreis, G., Kuhnt, K., Santercole, V. and Rader, J.I. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry. Lipids, 48, 1279-1295 (2013).
- Feldstein, A.E., Lopez,R., Tamimi,T.A.R., Yerian,L., Chung,Y.M., Berk,M., Zhang,R.L., McIntyre,T.M. and Hazen,S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res., 51, 3046-3054 (2010).
- Ferreiro-Vera, C., Ribeiro,J.P.N., Mata-Granados,J.M., Priego-Capote,F. and de Castro,M.D.L. Standard operation protocol for analysis of lipid hydroperoxides in human serum using a fully automated method based on solid-phase extraction and liquid chromatography-mass spectrometry in selected reaction monitoring. J. Chromatogr. A, 1218, 6720-6726 (2011).
- Foletta, V.C., Palmieri, M., Kloehn, J., Mason, S., Previs, S.F., McConville, M.J., Sieber, O.M., Bruce, C.R. and Kowalski, G.M. Analysis of mammalian cell proliferation and macromolecule synthesis using deuterated water and gas chromatography-mass spectrometry. Metabolites, 6, 34 (2016); DOI.
- Fukuda, Y. and Ando,Y. Occurrence of all-cis-5,8,11,14,17,20,23-hexacosaheptaenoic acid (26:7n-3) in roughscale sole Clidoderma asperrimum flesh lipids. Fisheries Sci., 77, 875-882 (2011).
- Fukushima, M., Tu, X.F., Aneksampant, A. and Tanaka, A. Analysis of branched-chain fatty acids in humic substances as indices for compost maturity by pyrolysis-gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py-GC/MS). J. Mat. Cycles Waste Manage., 20, 176-184 (2018); DOI.
- Furuhashi, T., Nakamura, T., Fragner, L., Roustan, V., Schon, V. and Weckwerth, W. Biodiesel and poly-unsaturated fatty acids production from algae and crop plants - a rapid and comprehensive workflow for lipid analysis. Biotech. J., 11, 1262-1267 (2016); DOI.
- Gachet, M.S., Schubert, A., Calarco, S., Boccard, J. and Gertsch, J. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci. Rep., 7, 41177 (2017); DOI.
- Garcia, C., Guillocheau, E., Richard, L., Drouin, G., Catheline, D., Legrand, P. and Rioux, V. Conversion of dietary trans-vaccenic acid to trans11,cis13-conjugated linoleic acid in the rat lactating mammary gland by Fatty Acid Desaturase 3-catalyzed methyl-end Delta 13-desaturation. Biochem. Biophys. Res. Commun., 505, 385-391 (2018); DOI.
- Garlito, B., Portoles, T., Niessen, W.M.A., Navarro, J.C., Hontoria, F., Monroig, O., Varo, I. and Serrano, R. Identification of very long-chain (>C-24) fatty acid methyl esters using gas chromatography coupled to quadrupole/time-of-flight mass spectrometry with atmospheric pressure chemical ionization source. Anal. Chim. Acta, 1051, 103-109 (2019); DOI.
- Gaugg, M.T., Bruderer, T., Nowak, N., Eiffert, L., Sinues, P.M.L., Kohler, M. and Zenobi, R. Mass-spectrometric detection of omega-oxidation products of aliphatic fatty acids in exhaled breath. Anal. Chem., 89, 10329-10334 (2017); DOI.
- Ginies, C., Brillard, J. and Nguyen-The, C. Identification of fatty acids in Bacillus cereus. J. Vis. Exp., 118, e54960 (2016); DOI.
- Glabonjat, R.A., Raber, G., Jensen, K.B., Ehgartner, J. and Francesconi, K.A. Quantification of arsenolipids in the certified reference material NMIJ 7405-a (Hijiki) using HPLC/mass spectrometry after chemical derivatization. Anal. Chem., 86, 10282-10287 (2014); DOI.
- Golebiowski, M., Bogus,M.I., Paszkiewicz,M. and Stepnowski,P. Cuticular lipids of insects as potential biofungicides: methods of lipid composition analysis. Anal. Bioanal. Chem., 399, 3177-3191 (2011).
- Gómez-Cortés, P., Brenna, J.T., Lawrence, P. and de la Fuente, M.A. Novel characterisation of minor alpha-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry. Food Chem., 200, 141-145 (2016); DOI.
- Gorissen,L., Raes,K., Weckx,S., Dannenberger,D., Leroy,F., De Vuyst,L. and De Smet,S. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl. Microbiol. Biotechnol., 87, 2257-2266 (2010).
- Grechkin, A.N., Ogorodnikova, A.V., Egorova, A.M., Mukhitova, F.K., Ilyina, T.M. and Khairutdinov, B.I. Allene oxide synthase pathway in cereal roots: detection of novel oxylipin graminoxins. Chemistryopen, 7, 336-343 (2018); DOI.
- Gu, Q., David, F., Lynen, F., Rumpel, K., Xu, G.W., De Vos, P. and Sandra, P. Analysis of bacterial fatty acids by flow modulated comprehensive two-dimensional gas chromatography with parallel flame ionization detector/mass spectrometry. J. Chromatogr. A, 1217, 4448-4453 (2010).
- Gu, W.Y., Liu, M.X., Sun, B.Q., Guo, M.Q., Wu, J.L. and Li, N. Profiling of polyunsaturated fatty acids in human serum using off-line and on-line solid phase extraction-nano-liquid chromatography-quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A, 1537, 141-146 (2018); DOI.
- Guichardant,M., Chen,P., Liu,M., Calzada,C., Colas,R., Vericel,E. and Lagarde,M. Functional lipidomics of oxidized products from polyunsaturated fatty acids. Chem. Phys. Lipids, 164, 544-548 (2011).
- Guijas, C., Astudillo, A.M., Gil-De-Gomez, L., Rubio, J.M., Balboa, M.A. and Balsinde, J. Phospholipid sources for adrenic acid mobilization in RAW 264.7 macrophages. Comparison with arachidonic acid. Biochim. Biophys. Acta, 1821, 1386-1393 (2012).
- Guijas, C., Meana, C., Astudillo, A.M, Balboa, M.A. and Balsinde, J. Foamy monocytes are enriched in cis-7-hexadecenoic fatty acid (16:1n-9), a possible biomarker for early detection of cardiovascular disease. Cell Chem. Biol., 23, 689-699 (2016); DOI.
- Guil-Guerrero, J.L. Common mistakes about fatty acids identification by gas-liquid chromatography. J. Food Comp. Anal., 33, 153-154 (2014); DOI.
- Gutierrez, A., Babot,E.D., Ullrich,R., Hofrichter,M., Martinez,A.T. and del Rio,J.C. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch. Biochem. Biophys., 514, 33-43 (2011).
- Hamberg, M. Stereochemistry of hydrogen removal during oxygenation of linoleic acid by singlet oxygen and synthesis of 11(S)-deuterium-labeled linoleic acid. Lipids, 46, 201-206 (2011).
- Hammann, S., Schroder, M., Schmidt, C. and Vetter, W. Isolation of two Delta 5 polymethylene interrupted fatty acids from Podocarpus falcatus by countercurrent chromatography. J. Chromatogr. A, 1394, 89-94 (2015); DOI.
- Hammann, S., Tillmann, U., Schroder, M. and Vetter, W. Profiling the fatty acids from a strain of the microalgae Alexandrium tamarense by means of high-speed counter-current chromatography and gas chromatography coupled with mass spectrometry. J. Chromatogr. A, 1312, 93-103 (2013).
- Han, J., Clement,J.M., Li,J., King,A., Ng,S. and Jaworski,J.G. The cytochrome P450 CYP86A22 is a fatty acyl-coA omega-hydroxylase essential for estolide synthesis in the stigma of petunia hybrida. J. Biol. Chem., 285, 3986-3996 (2010).
- Hansel, F.A., Bull,I.D. and Evershed,R.P. Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the 'bound' phase of organic residues of archaeological pottery vessels. Rapid Commun. Mass Spectrom., 25, 1893-1898 (2011).
- Harkewicz, R., Du, H.J., Tong, Z.Z., Alkuraya, H., Bedell, M., Sun, W.O., Wang, X.L., Hsu, Y.H., Esteve-Rudd, J., Hughes, G., Su, Z.G., Zhang, M., Lopes, V.S., Molday, R.S., Williams, D.S., Dennis, E.A. and Zhang, K. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function. J. Biol. Chem., 287, 11469-11480 (2012).
- Hauff, S. and Vetter,W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J. Chromatogr. A, 1217, 8270-8278 (2010).
- Hauff, S. and Vetter,W. Creation and evaluation of a two-dimensional contour plot of fatty acid methyl esters after off-line coupling of reversed-phase HPLC and GC/EI-MS. Anal. Bioanal. Chem., 396, 2695-2707 (2010).
- Hauff, S., Chefetz,B., Shechter,M. and Vetter,W. Determination of hydroxylated fatty acids from the biopolymer of tomato cutin and their fate during incubation in soil. Phytochem. Anal., 21, 582-589 (2010).
- Hejazi,L., Hibbert,D.B. and Ebrahimi,D. Identification of the geometrical isomers of alpha-linolenic acid using gas chromatography/mass spectrometry with a binary decision tree. Talanta, 83, 1233-1238 (2011).
- Hennessy,A.A., Barrett, E., Ross, R.P., Fitzgerald, G.F., Devery, R. and Stanton, C. The production of conjugated a-linolenic, g-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids, 47, 313-327 (2012).
- Higashi,T., Ichikawa,T., Inagaki,S., Min,J.Z., Fukushima,T. and Toyo'oka,T. Simple and practical derivatization procedure for enhanced detection of carboxylic acids in liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal., 52, 809-818 (2010).
- Higashi,T., Takekawa, M., Min, J.Z. and Toyo'oka, T. Diels-Alder derivatization for sensitive detection and characterization of conjugated linoleic acids using LC/ESI-MS/MS. Anal. Bioanal. Chem., 403, 495-502 (2012).
- Hirata, A., Kishino, S., Si-Bum Park, S.-B., Takeuchi, M., Kitamura, N. and Ogawa, J. A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus. J. Lipid Res., 56, 1340-1350 (2015); DOI.
- Hong, S., Cheng, T,-Y., Layre, E., Sweet, L., Young, D.C., Posey, J.E., Butler, W.R. and Moody, D.B. Ultralong C100 mycolic acids support the assignment of Segniliparus as a new bacterial genus. PLoS One, 7, e39017 (2012); DOI.
- Honkanen,A.M., Griinari, J.M., Vanhatalo, A., Ahvenjarvi, S., Toivonen, V. and Shingfield, K.J. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. J. Dairy Sci., 95, 1376-1394 (2012).
- Hsu,F.-F., Soehl,K., Turk,J. and Haas,A. Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Anal. Biochem., 409, 112-122 (2011).
- Hsu,W.Y., Lin,W.D., Hwu,W.L., Lai,C.C. and Tsai,F.J. Screening assay of very long chain fatty acids in human plasma with multiwalled carbon nanotube-based surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 82, 6814-6820 (2010).
- Imbs, A.B., Dang, L.P.T., Rybin, V.G. and Svetashev, V.I. Fatty acid, lipid class, and phospholipid molecular species composition of the soft coral Xenia sp (Nha Trang Bay, the South China Sea, Vietnam). "Lipids, 50, 575-589" (2015); DOI.
- Isidorov, V.A., Czyzewska,U., Jankowska,E. and Bakier,S. Determination of royal jelly acids in honey. Food Chem., 124, 387-391 (2011).
- Jarvinen, R., Kaimainen,M. and Kallio,H. Cutin composition of selected northern berries and seeds. Food Chem., 122, 137-144 (2010).
- Jenkin, S. and Molina, I. Isolation and compositional analysis of plant cuticle lipid polyester monomers. JOVE-J. Vis. Exp., 105, e53386 (2015); DOI.
- Jerneren, F., Sesma,A., Francheschetti,M., Hamberg,M. and Oliw,E.H. Gene deletion of 7,8-linoleate diol synthase of the rice blast fungus. Studies on pathogenicity, stereochemistry, and oxygenation mechanisms. J. Biol. Chem., 285, 5308-5316 (2010).
- Jeyanathan, J., Escobar, M., Wallace, R.J., Fievez, V. and Vlaeminck, B. Biohydrogenation of 22:6n-3 by Butyrivibrio proteoclasticus P18. BMC Microbiol., 16, 104 (2016); DOI.
- Jiang, R.Q., Jiao, Y., Zhang, P., Liu, Y., Wang, X., Huang, Y., Zhang, Z.J. and Xu, F.G. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry. Anal. Chem., 89, 12223-12230 (2017); DOI.
- Jiang, W., Liu,D., Deng,Z.W., de Voogd,N.J., Proksch,P. and Lin,W.H. Brominated polyunsaturated lipids and their stereochemistry from the Chinese marine sponge Xestospongia testudinaria. Tetrahedron, 67, 58-68 (2011).
- Jin, Z.C., Daiya,S. and Kenttamaa,H.I. Characterization of nonpolar lipids and selected steroids by using laser-induced acoustic desorption/chemical ionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry. Int. J. Mass Spectrom., 301, 234-239 (2011).
- Jones, P.M. and Bennett,M.J. Clinical applications of 3-hydroxy fatty acid analysis by gas chromatography-mass spectrometry. Biochim. Biophys. Acta, 1811, 657-662 (2011)
- Kaffarnik, S., Heid, C., Kayademir, Y., Eibler, D. and Vetter, W. High enantiomeric excess of the flavor relevant 4-alkyl-branched fatty acids in milk fat and subcutaneous adipose tissue of sheep and goat. J. Agric. Food Chem., 63, 469-475 (2015); DOI.
- Kaffarnik, S., Preuss, S. and Vetter, W. Direct determination of flavor relevant and further branched-chain fatty acids from sheep subcutaneous adipose tissue by gas chromatography with mass spectrometry. J. Chromatogr. A, 1350, 92-101 (2014); DOI.
- Kairenius, P., Toivonen, V. and Shingfield, K.J. Identification and ruminal outflow of long-chain fatty acid biohydrogenation intermediates in cows fed diets containing fish oil. Lipids, 46, 587-606 (2011); DOI.
- Kamphorst,J.J., Fan,J., Lu,W.Y., White,E. and Rabinowitz,J.D. Liquid chromatography-high resolution mass spectrometry analysis of fatty acid metabolism. Anal. Chem., 83, 9114-9122 (2011).
- Karas, M.A. and Russa, R. New long chain bases in lipophosphonoglycan of Acanthamoeba castellanii. Lipids, 48, 639-650 (2013).
- Kawashima, H. Diverse odd-chain monoenoic fatty acids and novel non-methylene-interrupted heptadecadienoic acids in ovaries of the limpet Cellana toreuma. Lipids, 53, 841-847 (2018); DOI.
- Kawashima, H. Novel non-methylene-interrupted dienoic and trienoic fatty acids with a terminal double bond in ovaries of the limpet Cellana toreuma. Lipids, in press (2020); DOI.
- Kawashima, H. and Ohnishi, M. Novel odd-chain fatty acids with a terminal double bond in ovaries of the limpet Cellana toreuma. Lipids, 52, 375-381 (2017); DOI.
- Kawashima, H. and Ohnishi, M. Novel heneicosadienoic and tricosadienoic acid isomers in ovaries of marine Archaeogastropods. Lipids, 47, 827-833 (2012).
- Kawashima, H. and Ohnishi, M. An unprecedented occurrence of Delta 5,9-and Delta 9,15-dienoic fatty acids in ovaries of the archaeogastropod limpet Cellana toreuma. Lipids, 51, 257-262 (2016); DOI.
- Kawashima, H., Toyooka, N., Okada, T., Nguyen, H.D., Nishikawa, Y., Miura, Y., Inoue, N. and Kimura, K. Identification and total synthesis of two previously unreported odd-chain bis-methylene-interrupted fatty acids with a terminal olefin that activate protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A) in ovaries of the limpet Cellana toreuma. Marine Drugs, 17, 410 (2019); DOI.
- Kendall, A.C., Pilkington, S.M., Massey, K.A., Sassano, G., Khodes, L.E. and Nicolaou, A. Distribution of bioactive lipid mediators in human skin. J. Invest. Dermatol., 135, 1510-1520 (2015); DOI.
- Kendel, M., Barnathan, G., Fleurence, J., Rabesaotra, V. and Wielgosz-Collin, G. Non-methylene interrupted and hydroxy fatty acids in polar lipids of the alga Grateloupia turuturu over the four seasons. Lipids,48, 535-545 (2013).
- Keum, Y.S., Park, H.W., Song, H.H., Kim, B.-D., Kang, B.-C and Kim, J.H. Metabolite analysis of long chain branched fatty acids and capsaicin biosynthesis in Capsicum annuum placenta. J. Korean Soc. Appl. Biol. Chem., 55, 189-195 (2012); DOI.
- Kharlamenko, V.I., Svetashev, V.I. and Tarasova, T.S. New and uncommon fatty acids in lipids of deep-sea Foraminifera. Lipids, 52, 345-352 (2017); DOI.
- Kijima, R., Honma, T., Ito, J., Yamasaki, M., Ikezaki, A., Motonaga, C., Nishiyama, K. and Tsuduki, T. Jacaric acid is rapidly metabolized to conjugated linoleic acid in rats. J. Oleo Sci., 62, 305-312 (2013); DOI.
- Kim, C.S., Lim, D.H. and Keum, Y.S. Lipase-catalyzed synthesis of fatty acid pyridylcarbinol ester for the analysis of seed lipids. J. Am. Oil Chem. Soc., 93, 339-346 (2016); DOI.
- Kim, G.W. and Itabashi, Y. Non-methylene-interrupted fatty acids with delta 5 unsaturation in Sargassum species. J. Oleo Sci., 61, 311-319 (2012).
- Kirres, C. and Vetter, W. Furan fatty acid content and homologue patterns of fresh green matrices. J. Food Comp. Anal., 67, 63-69 (2018); DOI.
- Kloos, D.P., Gay, E., Lingeman, H., Bracher, F., Muller, C., Mayboroda, O.A., Deelder, A.M., Niessen, W.M.A. and Giera, M. Comprehensive gas chromatography-electron ionisation mass spectrometric analysis of fatty acids and sterols using sequential one-pot silylation: quantification and isotopologue analysis. Rapid Commun. Mass Spectrom., 28, 1507-1514 (2014); DOI.
- Knothe, G. and Steidley, K.R. Composition of some Apiaceae seed oils includes phytochemicals, and mass spectrometry of fatty acid 2-methoxyethyl esters. Eur. J. Lipid Sci. Technol., 121, 1800386 (2019); DOI.
- Knothe, G., Phoo, Z.W.M.M., de Castro M.E.G. and Razon, L.F. Fatty acid profile of Albizia lebbeck and Albizia saman seed oils: Presence of coronaric acid. Eur. J. Lipid Sci. Technol., 117, 567-574 (2015); DOI.
- Knothe, G., Rashid,U., Yusup,S. and Anwar,F. Fatty acids of Thespesia populnea: mass spectrometry of picolinyl esters of cyclopropene fatty acids. Eur. J. Lipid Sci. Technol., 113, 980–984 (2011).
- Kolouchova, I., Schreiberova, O., Masak, J., Sigler, K. and Rezanka, T. Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry. Folia Microbiol., 57, 473-483 (2012).
- Kool, D.M., Zhu, B.L., Rijpstra, W.I.C., Jetten, M.S.M., Ettwig, K.F. and Damste, J.S.S. Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer "Candidatus methylomirabilis oxyfera". Appl. Environm. Microbiol., 78, 8650-8656 (2012).
- Kopf, T. and Schmitz, G. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. J. Chromatogr. B, 938, 22-26 (2013).
- Kortz, L., Dorow, J., Becker, S., Thiery, J. and Ceglarek, U. Fast liquid chromatography-quadrupole linear ion trap-mass spectrometry analysis of polyunsaturated fatty acids and eicosanoids in human plasma. J. Chromatogr. B, 927, 209-213 (2013).
- Kosma, D.K., Rice, A. and Pollard, M. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species. Phytochemistry, 117, 351-362 (2015); DOI.
- Kuiper, H.C., Wei, N., McGunigale, S.L. and Vesper, H.W. Quantitation of trans-fatty acids in human blood via isotope dilution-gas chromatography-negative chemical ionization-mass spectrometry. J. Chromatogr. B, 1076, 35-43 (2018); DOI.
- Kurkiewicz, S. and Kurkiewicz, A. Profiling of bacterial cellular fatty acids by pyrolytic derivatization to 3-pyridylcarbinol esters. J. Anal. Chem., 70, 1225-1228 (2015); DOI.
- Lanéelle, M.A. Eynard, N., Spina, L., Lemassu, A., Laval, F., Huc, E., Etienne, G., Marrakchi, H. and Daffé, M. Structural elucidation and genomic scrutiny of the C60-C100 mycolic acids of Segniliparus rotundus. Microbiology, 159, 191-203 (2013); DOI.
- Lanéelle, M.A., Launay, A., Spina, L., Marrakchi, H., Laval, F., Eynard, N., Lemassu, A., Tropis, M., Daffe, M. and Etienne, G. A novel mycolic acid species defines two novel genera of the Actinobacteria, Hoyosella and Amycolicicoccus. Microbiology-SGM, 158, 843-855 (2012).
- Lee, H., Feakins, S.J., Lu, Z.Y., Schimmelmann, A., Sessions, A.L., Tierney, J.E. and Williams, T.J. Comparison of three methods for the methylation of aliphatic and aromatic compounds. Rapid Commun. Mass Spectrom., 31, 1633-1640 (2017); DOI.
- Lee, Y.J. and Jenkins,T.C. Identification of enriched conjugated linoleic acid isomers in cultures of ruminal microorganisms after dosing with 1-(13)C-linoleic acid. J. Microbiol., 494, 622-627 (2011).
- Lemke, R.A.S., Peterson, A.C., Ziegelhoffer, E.C., Westphall, M.S., Tjellstroem, H., Coon, J.J. and Donohue, T.J. Synthesis and scavenging role of furan fatty acids. PNAS, 111, E3450-E3457 (2014); DOI.
- Levison, B.S., Zhang, R.L., Wang, Z.N., Fu, X.M., DiDonato, J.A. and Hazen, S.L. Quantification of fatty acid oxidation products using online high-performance liquid chromatography tandem mass spectrometry. Free Rad. Biol. Med., 59, 2-13 (2013).
- Li, A., Ha, Y.M., Wang, F., Li, W.M. and Li, Q.P. Determination of thermally induced trans-fatty acids in soybean oil by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography analysis. J. Agric. Food Chem., 60, 10709-10713 (2012).
- Li, D.L., Schroder, M. and Vetter, W. Isolation of 6,9,12,15-hexadecatetraenoic fatty acid (16:4n-1) methyl ester from transesterified fish oil by HSCCC. Chromatographia, 75, 1-6 (2012).
- Li, Q.L. and Zhang, G.F. Identification of n-hydroxy acid metabolites in electron impact ionization mass spectrometry. Rapid Commun. Mass Spectrom., 26, 1355-1362 (2012).
- Liang, T., Leung, L.M., Opene, B., Fondrie, W.E., Lee, Y.I., Chandler, C.E., Yoon, S.H., Doi, Y., Ernst, R.K. and Goodlett, D.R. Rapid microbial identification and antibiotic resistance detection by mass spectrometric analysis of membrane lipids. Anal. Chem., 91, 1286-1294 (2019); DOI.
- Liengprayoon, S., Sriroth,K., Dubreucq,E. and Vaysse,L. Glycolipid composition of Hevea brasiliensis latex. Phytochemistry, 72, 1902-1913 (2011).
- Lin, J.T., Hou, C.T., Dulay, R.M.R., Ray, K. and Chen, G.Q. Structures of hydroxy fatty acids as the constituents of triacylglycerols in Philippine wild edible mushroom, Ganoderma lucidum. Biocat. Agric. Biotechnol., 12, 148-151 (2017); DOI.
- Lischka, S., Arroyo-Abad, U., Mattusch, J., Kühn, A. and Piechotta, Ch. The high diversity of arsenolipids in herring fillet (Clupea harengus). Talanta, 110, 144-152 (2013).
- Liu, A.H., Chang,J., Lin,Y.H., Shen,Z.Q. and Bernstein,P.S. Long-chain and very long-chain polyunsaturated fatty acids in ocular aging and age-related macular degeneration. J. Lipid Res., 51, 3217-3229 (2010).
- Liu, M., Wei, F., Lv, X., Dong, X.Y. and Chen, H. Rapid and sensitive detection of free fatty acids in edible oils based on chemical derivatization coupled with electrospray ionization tandem mass spectrometry. Food Chem., 242, 338-344 (2018); DOI.
- Liu, Y., Liu,J.Y., Deng,C.H. and Zhang,X.M. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun. Mass Spectrom., 25, 3223-3234 (2011).
- Lopez-Bascon, M.A. Calderon-Santiago, M. and Priego-Capote, F. Confirmatory and quantitative analysis of fatty acid esters of hydroxy fatty acids in serum by solid phase extraction coupled to liquid chromatography tandem mass spectrometry. Anal. Chim. Acta, 943, 82-88 (2016); DOI.
- Losito, I., Facchini, L., Valentini, A., Cataldi, T.R.I. and Palmisano, F. Fatty acidomics: Evaluation of the effects of thermal treatments on commercial mussels through an extended characterization of their free fatty acids by liquid chromatography - Fourier transform mass spectrometry. Food Chem., 255, 309-322 (2018); DOI.
- Lu, Y. and Harrington,P.B. Classification of bacteria by simultaneous methylation-solid phase microextraction and gas chromatography/mass spectrometry analysis of fatty acid methyl esters. Anal. Bioanal. Chem., 397, 2959-2966 (2010).
- Lucquin, A., Colonese, A.C., Farrell, T.F.G. and Craig, O.E. Utilising phytanic acid diastereomers for the characterisation of archaeological lipid residues in pottery samples. Tetrahedron Letts., 57, 703-707 (2016); DOI.
- Ma, X. and Xia, Y. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Ang. Chem. Int. Ed., 53, 10, 2592-2596 (2014); DOI.
- Ma, X., Zhao, X., Li, J., Zhang, W., Cheng, J.-X., Ouyang, Z. and Xia, Y. Photochemical tagging for quantitation of unsaturated fatty acids by mass spectrometry. Anal. Chem., 88, 8931-8935 (2016); DOI.
- Ma, Y., Kind, T., Vaniya, A., Gennity, I., Fahrmann, J.F. and Fiehn, O. An in silico MS/MS library for automatic annotation of novel FAHFA lipids. J. Cheminformatics, 7, 53 (2015); DOI.
- Mangelsdorf, K., Bajerski, F., Karger, C. and Wagner, D. Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4(T) isolated from an East Antarctic glacier forefield. Organic Geochem., 106, 68-75 (2017); DOI.
- Manni, M.M., Sot, J., Arretxe, E., Gil-Redondo, R., Falcon-Perez, J.M., Balgoma, D., Alonso, C., Goni, F.M. and Alonso, A. The fatty acids of sphingomyelins and ceramides in mammalian tissues and cultured cells: Biophysical and physiological implications. Chem. Phys. Lipids, 217, 29-34 (2018); DOI.
- Marekov, I., Momchilova, S., Grung, B. and Nikolova-Damyanova, B. Fatty acid composition of wild mushroom species of order Agaricales - Examination by gas chromatography-mass spectrometry and chemometrics. J. Chromatogr. B, 910, 54-60 (2012).
- Marquez-Ruiz, G., Rodriguez-Pino,V. and de la Fuente,M.A. Determination of 10-hydroxystearic, 10-ketostearic, 8-hydroxypalmitic, and 8-ketopalmitic acids in milk fat by solid-phase extraction plus gas chromatography-mass spectrometry. J. Dairy Sci., 94, 4810-4819 (2011).
- Marshall, D.L., Saville, J.T., Maccarone, A.T., Ailuri, R., Kelso, M.J., Mitchell, T.W. and Blanksby, S.J. Determination of ester position in isomeric (O-acyl)-hydroxy fatty acids by ion trap mass spectrometry. Rapid Commun. Mass Spectrom., 30, 2351-2359 (2016); DOI.
- Martin-Arjol, I., Bassas-Galia,M., Bermudo,E., Garcia,F. and Manresa,A. Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2. Chem. Phys. Lipids, 163, 341-346 (2010).
- Martin-Arjol, I., Busquets, M., Isbell, T.A. and Manresa, A. Production of 10(S)-hydroxy-8(E)-octadecenoic and 7,10(S,S)-hydroxy-8(E)-octadecenoic ethyl esters by Novozym 435 in solvent-free media. Appl. Microbiol. Biotechnol., 97, 8041-8048 (2013).
- Maru, N., Ohno,O., Koyama,T., Yamada,K. and Uemura,D. Papillamide, a novel fatty acid amide from the red alga Laurencia papillosa. Chem. Letts, 39, 366-367 (2010).
- Merlier, F., Imatoukene, N., Octave, S., Nicaud, J.M. and Thomasset, B. A gas chromatography full scan high resolution Orbitrap mass spectrometry method for separation and characterization of 3-hydroxymethyl pyridine ester of fatty acids at low levels. J. Chromatogr. A, 1575, 72-79 (2018); DOI.
- Milic, I., Griesser, E., Vemula, V., Ieda, N., Nakagawa, H., Miyata, N., Galano, J.M., Oger, C., Durand, T. and Fedorova, M. Profiling and relative quantification of multiply nitrated and oxidized fatty acids. Anal. Bioanal. Chem., 407, 5587-5602 (2015); DOI.
- Minakata, K. and Iwahashi,H. Identification of a radical formed in the reaction mixtures of ram seminal vesicle microsomes with arachidonic acid using high performance liquid chromatography-electron spin resonance spectrometry and high performance liquid chromatography-electron spin resonance-mass spectrometry. J. Clin. Biochem. Nutr., 46, 135-139 (2010).
- Mishra, R.K., Robert-Peillard, F., Ravier, S., Coulomb, B. and Boudenne, J.L. beta-Hydroxymyristic acid as a chemical marker to detect endotoxins in dialysis water. Anal. Biochem., 470, 71-77 (2015); DOI.
- Mok, H.J., Lee, J.W., Bandu, R., Kang, H.S., Kim, K.H. and Kim, K.P. A rapid and sensitive profiling of free fatty acids using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Adv., 6, 32130-32139 (2016); DOI.
- Mori, N., Fukano, Y., Arita, R., Shirakawa, R., Kawazu, K., Nakamura, M. and Amano, S. Rapid identification of fatty acids and (O-acyl)-omega-hydroxy fatty acids in human meibum by liquid chromatography/high-resolution mass spectrometry. J. Chromatogr. A, 1347, 129-136 (2014); DOI.
- Müller, M., Wasmer, K. and Vetter, W. Multiple injection mode with or without repeated sample injections: Strategies to enhance productivity in countercurrent chromatography. J. Chromatogr. A, 1556, 88-96 (2018); DOI.
- Murphy, R.C., Okuno, T., Johnson, C.A. and Barkleyte, R.M. Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry. Anal. Chem., 89, 8545-8553 (2017); DOI.
- Nevigato, T., Masci, M., Orban, E., Di Lena, G., Casini, I. and Caproni, R. Analysis of fatty acids in 12 Mediterranean fish species: advantages and limitations of a new GC-FID/GC-MS based technique. Lipids, 47, 741-753 (2012).
- Nilsson, T., Martinez,E., Manresa,A. and Oliw,E.H. Liquid chromatography/tandem mass spectrometric analysis of 7,10-dihydroxyoctadecenoic acid, its isotopomers, and other 7,10-dihydroxy fatty acids formed by Pseudomonas aeruginosa 42A2. Rapid Commun. Mass Spectrom., 24, 777-783 (2010).
- Ntumba, J.K., Collard, L., Taba, K.M. and Robiette, R. Isolation of a series of fatty acid components of Ongokea gore seed (Isano) Oil and their detailed structural analysis. Lipids, 50, 313-322 (2015); DOI.
- O'Sullivan, D.M., Nicoara, S.C., Mutetwa, R., Mungofa, S., Lee, O.Y.C., Minnikin, D.E., Bardwell, M.W., Corbett, E.L., McNerney, R. and Morgan, G.H. Detection of Mycobacterium tuberculosis in sputum by gas chromatography-mass spectrometry of methyl mycocerosates released by thermochemolysis. PLOS One, 7, e32836 (2012).
- Okada, S., Zhou, X.-R., Damcevski, K., Gibb, N., Wood, C., Hamberg, M. and Haritos, V.S. Diversity of Delta12 fatty acid desaturases in Santalaceae and their role in production of seed oil acetylenic fatty acids. J. Biol. Chem., 288, 32405-32413 (2013); DOI.
- Oliw, E.H., Wennman,A., Hoffmann,I., Garscha,U., Hamberg,M. and Jerneren,F. Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. J. Lipid Res., 52, 1995-2004 (2011).
- Ortin, Y. and Evans, P. trans-Tetradec-2-enoic acid in Impatiens glandulifera. Synth. Commun., 43, 1404-1412 (2013).
- Osipova, E.V., Lantsova,N.V., Chechetkin,I.R., Mukhitova,F.K., Hamberg,M. and Grechkin,A.N. Hexadecanoid pathway in plants: Lipoxygenase dioxygenation of (7Z,10Z,13Z)-hexadecatrienoic acid. Biochemistry-Moscow, 75, 708-716 (2010).
- Ostachowska, A., Stepnowski, P. and Golebiowski, M. Dicarboxylic acids and hydroxy fatty acids in different species of fungi. Chem. Papers, 71, 999-1005 (2017); DOI.
- Ozaki, H., Nakano, Y., Sakamaki, H., Yamanaka, H. and Nakai, M. Basic eluent for rapid and comprehensive analysis of fatty acid isomers using reversed-phase high performance liquid chromatography/Fourier transform mass spectrometry. J. Chromatogr. A, 1585, 113-120 (2019); DOI.
- Pacetti, D., Alberti, F., Boselli, E. and Frega, N.G. Characterisation of furan fatty acids in Adriatic fish. Food Chem., 122, 209-215 (2010).
- Papakosta, V., Smittenberg, R.H., Gibbs, K., Jordan, P. and Isaksson, S. Extraction and derivatization of absorbed lipid residues from very small and very old samples of ceramic potsherds for molecular analysis by gas chromatography-mass spectrometry (GC-MS) and single compound stable carbon isotope analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Microchem. J., 123, 196-200 (2015); DOI.
- Park, H.G., Cho, H.T., Song, M.C., Kim, S.B., Kwon, E.G., Choi, N.J. and Kim, Y.J. Production of a conjugated fatty acid by Bifidobacterium breve LMC520 from alpha-linolenic acid: conjugated linolenic acid (CLnA). J. Agric. Food Chem., 60, 3204-3210 (2012).
- Park, H.G., Zhang, J.Y., Foster, C., Sudilovsky, D., Schwed, D.A., Mecenas, J., Devapatla, S., Lawrence, P., Kothapalli, K.S.D. and Brenna, J.T. A rare eicosanoid precursor analogue, sciadonic acid (5Z,11Z,14Z-20:3), detected in vivo in hormone positive breast cancer tissue. PLEFA, 134, 1-6 (2018); DOI.
- Pereira, E.R., Kopp, J.F., Raab, A., Krupp, E.M., Menoyo, J.D., Carasek, E., Welz, B. and Feldmann, J. Arsenic containing medium and long chain fatty acids in marine fish oil identified as degradation products using reversed-phase HPLC-ICP-MS/ESI-MS. J. Anal. Atomic Spectr., 31, 1836-1845 (2016); DOI.
- Pereira, G.G., Alberici, R.M., Fernandes, G.D., Cunha, I.B.S., Eberlin, M.N., Dobarganes, M.C., Daroda, R.J. and Barrera-Arellano, D. Ambient sonic-spray ionization mass spectrometry for rapid monitoring of secondary oxidation products in biodiesel. Eur. J. Lipid Sci. Technol., 116, 952-960 (2014); DOI.
- Pham, H.T., Ly, T., Trevitt, A.J., Mitchell, T.W. and Blanksby, S.J. Differentiation of complex lipid isomers by radical-directed dissociation mass spectrometry. Anal. Chem., 84, 7525-7532 (2012).
- Pham, H.T., Prendergast, M.B., Dunstan, C.W., Trevitt, A.J., Mitchell, T.W., Julian, R.R. and Blanksby, S.J. Dissociation of proton-bound complexes reveals geometry and arrangement of double bonds in unsaturated lipids. Int. J. Mass Spectrom., 390, 170-177 (2015); DOI.
- Pham, H.T., Trevitt, A.J., Mitchell, T.W. and Blanksby, S.J. Rapid differentiation of isomeric lipids by photodissociation mass spectrometry of fatty acid derivatives. Rapid Commun. Mass Spectrom., 27, 805-815 (2013).
- Pleik, S., Spengler, B., Schafer, T., Urbach, D., Luhn, S. and Kirsch, D. Fatty acid structure and degradation analysis in fingerprint residues. J. Am. Soc. Mass Spectrom., 27, 1565-1574 (2016); DOI.
- Poad,B.L.J., Pham,H.T., Thomas,M.C., Nealon,J.R., Campbell,J.L., Mitchell,T.W. and Blanksby,S.J. Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J. Am. Soc. Mass Spectrom., 21, 1989-1999 (2010).
- Pollard, M., Martin, TM. and Shachar-Hill, Y Lipid analysis of developing Camelina sativa seeds and cultured embryos. Phytochemistry, 118, 23-32 (2015); DOI.
- Portevin, D., Sukumar, S., Coscolla, M., Shui, G.H., Li, B.W., Guan, X.L., Bendt, A.K., Young, D.L., Gagneux, S. and Wenk, M.R. Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. Microbiol. Open, 3, 823-835 (2014); DOI.
- Potter, G., Xia, W., Budge, S.M. and Speers, R.A. Quantitative analysis of 3-OH oxylipins in fermentation yeast. Can. J. Microbiol., 63, 100-109 (2017); DOI.
- Purwaha, P., Gu,Y., Kelavkar,U., Kang,J.X., Law,B., Wu,E.X. and Qian,S.Y. LC/ESR/MS study of pH-dependent radical generation from 15-LOX-catalyzed DPA peroxidation. Free Rad. Biol. Med.,51, 1461-1470 (2011).
- Quehenberger, O., Armando,A.M. and Dennis,E.A. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim. Biophys. Acta, 1811, 648-656 (2011); DOI.
- Quevrain, E., Barnathan, G., Meziane, T., Domart-Coulon, I., Rabesaotra, V. and Bourguet-Kondracki, M.L. New 2-methyl-13-icosenoic acid from the temperate Calcisponge Leuconia johnstoni. Lipids, 47, 345-353 (2012).
- Quideau, S.A., McIntosh, A.C.S., Norris, C.E., Lloret, E., Swallow, M.J.B. and Hannam, K. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp., 114, e54360 (2016); DOI.
- Raab, A., Newcombe, C., Pitton, D., Ebel, R. and Feldmann, J. Comprehensive analysis of lipophilic arsenic species in a brown Alga (Saccharina latissima). Anal. Chem., 85, 2817-2824 (2013).
- Ran-Ressler, R.R., Lawrence, P. and Brenna, J.T. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization. J. Lipid Res., 53, 195-203 (2012).
- Randolph, C.E., Foreman, D.J., Betancourt, S.K., Blanksby, S.J. and McLuckey, S.A. Gas-phase ion/ion reactions involving tris-phenanthroline alkaline earth metal complexes as charge inversion reagents for the identification of fatty acids. Anal. Chem., 90, 12861-12869 (2018); DOI.
- Rankin, D.A. and Carr, C.M Characterisation of the bound lipids at the wool fibre surface by time of flight secondary ion mass spectrometry (ToF-SIMS). J. Textile Inst., 104, 197-212 (2013).
- Reindl, W. and Northen,T.R. Rapid screening of fatty acids using nanostructure-initiator mass spectrometry. Anal. Chem., 82, 3751-3755 (2010).
- Ren, J.W., Mozurkewich, E.L., Sen, A., Vahratian, A.M., Ferreri, T.G., Morse, A.N. and Djuric, Z. Total serum fatty acid analysis by GC-MS: assay validation and serum sample stability. Curr. Pharm. Anal., 9, 331-339 (2013).
- Rezanka, T., Gharwalova, L., Novakova, G., Kolouchova, I., Uhlik, O. and Sigler, K. Kocuria bacterial isolates from radioactive springs of Jachymov spa (Joachimsthal) as sources of polyunsaturated fatty acids. Lipids, 54, 177-187 (2019); DOI.
- Rezanka, T., Kolouchová, I. and Sigler, K. Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiol., 60, 457-464 (2015); DOI.
- Rezanka, T., Kolouchova, I., Gharwalova, L., Palyzova, A. and Sigler, K. Identification and characterization of phospholipids with very long chain fatty acids in brewer's yeast. Lipids, 52, 1007-1017 (2017); DOI.
- Rezanka, T., Lukaysky, J., Nedbalova, L. and Sigler, K. Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids. Phytochemistry, 139, 88-97 (2017); DOI.
- Rezanka, T., Lukaysky, J., Vitova, M., Nedbalova, L. and Sigler, K. Lipidomic analysis of Botryococcus (Trebouxiophyceae, Chlorophyta) - Identification of lipid classes containing very long chain fatty acids by offline two-dimensional LC-tandem MS. Phytochemistry, 148, 29-38 (2018); DOI.
- Rezanka, T., Vitova, M., Lukavsky, J., Nedbalova, L. and Kolouchova, I. Rapid screening of very long-chain fatty acids from microorganisms. J. Chromatogr. A, 1605, 460365 (2019); DOI.
- Rezanka, T., Vitova, M., Lukavsky, J. and Sigler, K. Lipidomic study of precursors of endocannabinoids in freshwater Bryozoan Pectinatella magnifica. Lipids, 53, 413-427 (2018); DOI.
- Rioux, V., Choque, B., Ezanno, H., Duby, C., Catheline, D. and Legrand, P. Influence of the cis-9, cis-12 and cis-15 double bond position in octadecenoic acid (18:1) isomers on the rat FADS2-catalyzed Δ6-desaturation Chem. Phys Lipids, 187, 10-19 (2015); DOI.
- Rioux, V., Pédrono, F., Blanchard, H., Duby, C., Boulier-Monthéan, N., Bernard, L., Beauchamp, E., Catheline, D. and Legrand, P. Trans-vaccenate is Delta13-desaturated by FADS3 in rodents. J. Lipid Res., 54, 3438-3452 (2013); DOI.
- Rivera-Betancourt, O.E., Karls, R., Grosse-Siestrup, B., Helms, S., Quinn, F. and Dluhy, R.A. Identification of mycobacteria based on spectroscopic analyses of mycolic acid profiles. Analyst, 138, 6774-6785 (2013).
- Rodriguez, W., Osorno,O., Ramos,F.A., Duque,C. and Zea,S. New fatty acids from Colombian Caribbean Sea sponges. Biochem. System. Ecol., 38, 774-783 (2010).
- Rombouts, Y., Alibaud,L., Carrere-Kremer,S., Maes,E., Tokarski,C., Elass,E., Kremer,L. and Guerardel,Y. Fatty acyl chains of Mycobacterium marinum lipooligosaccharides., structure, localization and acylation by PapA4 (MMAR_2343) protein. J. Biol. Chem., 286, 33678-33688 (2011).
- Rush, D., Jaeschke,A., Hopmans,E.C., Geenevasen,J.A.J., Schouten,S. and Damste,J.S.S. Short chain ladderanes: Oxic biodegradation products of anammox lipids. Geochim. Cosmochim. Acta, 75, 1662-1671 (2011).
- Saito, H. Various fatty acids in marine lipids J. Lipid Nutr., 21, 45-50 (2012).
- Saito, H. and Hashimoto,J. Characteristics of the fatty acid composition of a deep-sea vent gastropod, Ifremeria nautilei. Lipids, 45, 537-548 (2010).
- Sakurai, K., Moriyama, T. and Sato, N. Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas reinhardtii. Eukaryotic Cell, 13, 256-266 (2014); DOI.
- Salvatore, S.R., Vitturi, D.A. Baker, P.R.S., Bonacci, G., Koenitzer, J.R., Woodcock, S.R., Freeman, B.A. and Schopfer, F.J. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J. Lipid Res., 54, 1998-2009 (2013); DOI.
- Sanaki, T., Inaba, Y., Fujiwara, T., Yoshioka, T., Matsushima, K., Minagawa, K., Higashino, K., Nakano, T. and Numata, Y. A hybrid strategy using global analysis of oxidized fatty acids and bioconversion by Bacillus circulans. Rapid Commun. Mass Spectrom., 30, 751-762 (2016); DOI.
- Sansone, A., Melchiorre, M., Chatgilialoglu, C. and Ferreri, C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem. Res. Toxicol., 26, 1703-1709 (2013).
- Sansone, A., Tolika, E., Louka, M., Sunda, V., Deplano, S., Melchiorre, M., Anagnostopoulos, D., Chatgilialoglu, C., Formisano, C., Di Micco, R., Mennella, M.R.F. and Ferreri, C. Hexadecenoic fatty acid isomers in human blood lipids and their relevance for the interpretation of lipidomic profiles. PLOS One, 11, e0152378 (2016); DOI.
- Santalova, E.A., Denisenko, V.A., Dmitrenok, P.S., Drozdov, A.L. and Stonik, V.A. Cerebrosides from a Far-Eastern Glass Sponge Aulosaccus sp. Lipids, 50, 57-69 (2015); DOI.
- Santos, S. and Graca, J. Stereochemistry of C18 monounsaturated cork suberin acids determined by spectroscopic techniques including 1H-NMR multiplet analysis of olefinic protons. Phytochem. Anal., 25, 192-200 (2014); DOI.
- Schlotterbeck, J., Cebo, M., Kolb, A. and Lammerhofer, M. Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal. Bioanal. Chem., 411, 479-491 (2019); DOI.
- Schröder, M. and Vetter, W. Detection of 430 fatty acid methyl esters from a transesterified butter sample. J. Am. Oil Chem. Soc., 90, 771-790 (2013).
- Schröder, M., Lutz, Nina L. and Vetter, W. GC/MS and H-1-NMR analysis of phytanic acid synthesized from natural trans-phytol and a synthetic phytol standard. Chromatographia, 77, 379-385 (2014); DOI.
- Schröder, M., Abdurahman, H., Ruoff, T., Lehnert, K. and Vetter, W. Identification of aromatic fatty acids in butter fat. J. Am. Oil Chem. Soc., 91, 1695-1702 (2014); DOI.
- Schröder, M., Lutz, N.L., Tangwan, E.C., Hajazimi, E. and Vetter, W. Phytanic acid concentrations and diastereomer ratios in milk fat during changes in the cow's feed from concentrate to hay and back. Eur. Food Res. Technol., 234, 955-962 (2012).
- Schroter, J. and Schiller, J. Chlorinated phospholipids and fatty acids: (patho) physiological relevance, potential toxicity, and analysis of lipid chlorohydrins. Oxid. Med. Cell. Longevity, 8386362 (2016); DOI.
- Schroter, J., Griesinger, H., Reuss, E., Schulz, M., Riemer, T., Suss, R., Schiller, J. and Fuchs, B. Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A, 1439, 89-96 (2016); DOI.
- Schuchardt, J.P., Schneider, I., Willenberg, I., Yang, J., Hammock, B.D., Hahn, A. and Schebb, N.H. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA. Prostaglandins Other Lipid Mediators, 109, 23-31 (2014); DOI.
- Sele, V., Sloth, J.J., Holmelid, B., Valdersnes, S., Skov, K. and Amlund, H. Arsenic-containing fatty acids and hydrocarbons in marine oils - determination using reversed-phase HPLC-ICP-MS and HPLC-qTOF-MS. Talanta, 121, 89-96 (2014); DOI.
- Semeraro, M., Rizzo, C., Boenzi, S., Cappa, M., Bertini, E., Antonetti, G. and Dionisi-Vici, C. A new multiplex method for the diagnosis of peroxisomal disorders allowing simultaneous determination of plasma very-long-chain fatty acids, phytanic, pristanic, docosahexaenoic and bile acids by high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Clin. Chim. Acta, 458, 159-164 (2016); DOI.
- Seo, C., Kim, Y., Lee, H.S., Kim, S.Z. and Paik, M.J. Metabolic profiling of aliphatic, hydroxy, and methyl-branched fatty acids in human plasma by gas chromatography-mass spectrometry. Anal. Letts, 51, 793-806 (2018); DOI.
- Seo, C., Yoon, J., Rhee, Y., Kim, J.J., Nam, S.J., Lee, W., Lee, G., Yee, S.T. and Paik, M.J. Simultaneous analysis of seven 2-hydroxy fatty acids as tert-butyldimethylsilyl derivatives in plasma by gas chromatography-mass spectrometry. Biomed. Chromatogr., 29, 156-160 (2015); DOI.
- Seo, M.J., Shin, K.C. and Oh, D.K. Production of 5,8-dihydroxy-9,12(Z,Z)-octadecadienoic acid from linoleic acid by whole recombinant Escherichia coli cells expressing diol synthase from Aspergillus nidulans. Appl. Microbiol. Biotechnol., 98, 7447-7456 (2014); DOI.
- Shah, U., Lay, J.O. and Proctor, A. Significance of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) in the GC-MS identification of conjugated fatty acid positional isomers. J. Am. Oil Chem. Soc., 90, 155-158 (2013).
- Shah, U., Proctor, A., Lay, J.O. and Moon, K. Determination of CLA trans,trans positional isomerism in CLA-rich soy oil by GC-MS and silver ion HPLC. J. Am. Oil Chem. Soc., 89, 979-985 (2012).
- Shibamoto, S., Murata, T., Lu, W.J. and Yamamoto, K. Preparation of dimethyl disulfide adducts from the mono-trans octadecadienoic acid methyl esters. Lipids, 53, 653-659 (2018); DOI.
- Shibamoto, S., Murata, T. and Yamamoto, K. Determination of double bond positions and geometry of methyl linoleate isomers with dimethyl disulfide adducts by GC/MS. Lipids, 51, 1077-1081 (2016); DOI.
- Shui, G.H., and 19 others. Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice. EMBO Mol. Med., 4, 27-37 (2012).
- Sidorov, R.A., Kuznetsova, E.I., Pchelkin, V.P., Zhukov, A.V., Gorshkova, E.N. And Tsydendambaev, V.D. Fatty acid composition of the pollen lipids of Cycas revoluta Thunb. Grasas Aceites, 67, UNSP e163 (2016); DOI.
- Sieben, D., Santana, A., Nowka, P., Weber, S., Funke, K. and Huttenhain, S.H. Preparation of the even-numbered 3-oxo fatty acid nicotinyl esters from C6:0 to C18:0. Tetrahedron Letts., 57, 808-810 (2016); DOI.
- Siristova, L., Luhovy,R., Sigler,K. and Rezanka,T. Biosynthesis of omega-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber. Extremophiles, 15, 423-429 (2011).
- Sledzinski, T., Mika, A., Stepnowski, P., Proczko-Markuszewska, M., Kaska, L., Stefaniak, T. and Swierczynski, J. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum.. Lipids, 48, 839-848 (2013).
- Sooman, L. and Oliw, E.H. Discovery of a novel linoleate dioxygenase of Fusarium oxysporum and linoleate diol synthase of Colletotrichum graminicola. Lipids, 50, 1243-1252 (2015); DOI.
- Spickett, C.M. and Fauzi,N.M. Analysis of oxidized and chlorinated lipids by mass spectrometry and relevance to signalling. Biochem. Soc. Trans., 39, 1233-1239 (2011).
- Spitsmeister, M., Adamberg,K. and Vilu,R. UPLC/MS based method for quantitative determination of fatty acid composition in Gram-negative and Gram-positive bacteria. J. Microbiol. Methods, 82, 288-295 (2010).
- Stiboller, M., Raber, G., Lenters, V., Gjengedal, E.L.F., Eggesbo, M. and Francesconi, K.A. Arsenolipids detected in the milk of nursing mothers. Env. Sci. Technol. Letts, 4, 273-279 (2017); DOI.
- Sun, C.X., Zhao, Y.Y. and Curtis, J.M. The direct determination of double bond positions in lipid mixtures by liquid chromatography/in-line ozonolysis/mass spectrometry. Anal. Chim. Acta, 762, 68-75 (2013).
- Svetashev, V.I. Mild method for preparation of 4,4-dimethyloxazoline derivatives of polyunsaturated fatty acids for GC-MS. Lipids, 46, 463-467 (2011).
- Svetashev, V. and Kharlamenko, V. Occurrence of hexacosapolyenoic acids 26:7(n-3), 26:6(n-3), 26:6(n-6) and 26:5(n-3) in deep-sea brittle stars from near the Kuril Islands. Lipids, 50, 691-696 (2015); DOI.
- Szewczyk, R., Kowalski, K., Janiszewska-Drobinska, B. and Druszczynska, M. Rapid method for Mycobacterium tuberculosis identification using electrospray ionization tandem mass spectrometry analysis of mycolic acids. Diagn. Microbiol. Infect. Dis., 76, 298-305 (2013).
- Tarvainen, M., Suomela,J.P. and Kallio,H. Ultra high performance liquid chromatography-mass spectrometric analysis of oxidized free fatty acids and acylglycerols. Eur. J. Lipid Sci. Technol., 113, 409-422 (2011).
- Takahashi, T. and Yoshida, S. Distribution of glycolipid and unsaturated fatty acids in human hair. Lipids, 49, 905-917 (2014); DOI.
- Takashima, S., Toyoshi, K., Itoh, T., Kajiwara, N., Honda, A., Ohba, A., Takemoto, S., Yoshida, S. and Shimozawa, N. Detection of unusual very-long-chain fatty acid and ether lipid derivatives in the fibroblasts and plasma of patients with peroxisomal diseases using liquid chromatography-mass spectrometry. Mol. Gen. Metab., 120, 255-268 (2017); DOI.
- Tanaka, H., Harauma, A., Takimoto, M. and Moriguchi, T. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency. PLEFA, 97, 1-6 (2015); DOI.
- Taleshi, M.S., Raber, G., Edmonds, J.S., Jensen, K.B. and Francesconi, K.A. Arsenolipids in oil from blue whiting Micromesistius poutassou - evidence for arsenic-containing esters. Sci. Rep., 4, 7492 (2014); DOI.
- Tatituri, R.V.V., Wolf, B.J., Brenner, M.B., Turk, J. and Hsu, F.F. Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization. Anal. Bioanal. Chem., 407, 2519-2528 (2015); DOI.
- Teramoto, K., Tamura, T., Hanada, S., Sato, T., Kawasaki, H., Suzuki, K.-i. and Sato, H. Simple and rapid characterization of mycolic acids from Dietzia strains by using MALDI spiral-TOFMS with ultra high mass-resolving power. J. Antibiotics, 66, 713-717 (2013).
- Thomas, M.C., Altvater, J., Gallagher, T.J. and Nette, G.W. Collision-induced dissociation of fatty acid [M-2H+Na](-) ions: charge-directed fragmentation and assignment of double bond position. J. Am. Soc. Mass Spectrom., 25, 1917-1926 (2014); DOI.
- Topkafa, M., Kara, H. and Sherazi, S.T.H. Evaluation of the triglyceride composition of pomegranate seed oil by RP-HPLC followed by GC-MS. J. Am. Oil Chem. Soc., 92, 791-800 (2015); DOI.
- Trettin, A., Bohmer, A., Zoerner, A.A., Gutzki, F.M., Jordan, J. and Tsikas, D. GC-MS/MS and LC-MS/MS studies on unlabelled and deuterium-labelled oleic acid (C18:1) reactions with peroxynitrite (O=N-O-O-) in buffer and hemolysate support the pM/nM-range of nitro-oleic acids in human plasma. J. Chromatogr. B, 964, 172-179 (2014); DOI.
- Tsikas, D., Zoerner,A.A. and Jordan,J. Oxidized and nitrated oleic acid in biological systems: Analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim. Biophys. Acta, 1811, 694-705 (2011)
- Ubhayasekera, S.J.K.A., Staaf, J., Forslund, A., Bergsten, P. and Bergquist, J. Free fatty acid determination in plasma by GC-MS after conversion to Weinreb amides. Anal. Bioanal. Chem., 405, 1929-1935 (2013).
- Uchida, H., Itabashi, Y., Watanabe, R., Matsushima, R., Oikawa, H., Suzuki, T., Hosokawa, M., Tsutsumi, N., Ura, K., Romanazzi, D. and Miller, M.R. Detection and identification of furan fatty acids from fish lipids by high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Food Chem., 252, 84-91 (2018); DOI.
- Uhlig, S., Negard, M., Heldal, K.K., Straumfors, A., Madso, L., Bakke, B. and Eduard, W. Profiling of 3-hydroxy fatty acids as environmental markers of endotoxin using liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A, 1434, 119-126 (2016); DOI.
- Vahmani, P., Rolland, D.C., Gzyl, K.E. and Dugan, M.E.R. Non-conjugated cis/trans 18:2 in beef fat are mainly delta-9 desaturation products of trans-18:1 isomers. Lipids, 51, 1427-1433 (2016); DOI.
- Vetter, W., Laure, S., Wendlinger, C., Mattes, A., Smith, A.W.T. and Knight, D.W. Determination of furan fatty acids in food samples. J. Am. Oil Chem. Soc., 89, 1501-1508 (2012).
- Vetter, W., Ulms, K., Wendlinger, C. and van Rijn, J. Novel non-methylated furan fatty acids in fish from a zero discharge aquaculture system. NFS J., 2, 8-14 (2016); DOI.
- Villegas, C., Zhao,Y. and Curtis,J.M. Two methods for the separation of monounsaturated octadecenoic acid isomers. J. Chromatogr. A, 1217, 775-784 (2010).
- Voorhees, K.J., Jensen, K.R., McAlpin, C.R., Rees, J.C., Cody, R., Ubukata, M. and Cox, C.R. Modified MALDI MS fatty acid profiling for bacterial identification. J. Mass Spectrom., 48, 850-855 (2013).
- Vrkoslav, V. and Cvacka, J. Identification of the double-bond position in fatty acid methyl esters by liquid chromatography/atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A, 1259, 244-250 (2012).
- Vyssotski, M., Lee,K.C.Y., Lagutin,K., Ryan,J., Morgan,X.C. and Stott,M.B. Fatty acids of Chthonomonas calidirosea, of a novel class Chthonomonadetes from a recently described phylum Armatimonadetes. Lipids, 46, 1155-1161 (2011)
- Vyssotski, M., Ryan, J., Lagutin, K., Wong, H., Morgan, X. and Stott, M. A novel fatty acid, 12,17-dimethyloctadecanoic acid, from the extremophile Thermogemmatispora sp (Strain T81). Lipids, 47, 601-611 (2012).
- Wada, Y., Yoshida-Yamamoto, S., Wada, Y., Nakayama, M., Mitsuda, N. and Kitajima, H. Trans fatty acid accumulation in the human placenta. J. Mass Spectrom., 52, 139-143 (2017); DOI.
- Wahjudi, P.N., Yee,J.K., Martinez,S.R., Zhang,J., Teitell,M., Nikolaenko,L., Swerdloff,R., Wang,C. and Lee,W.N.P. Turnover of nonessential fatty acids in cardiolipin from the rat heart. J. Lipid Res., 52, 2226-2233 (2011)
- Wakeham, S.G., Turich, C., Taylor, G.T., Podlaska, A., Scranton, M.I., Li, X.N., Varela, R. and Astor, Y. Mid-chain methoxylated fatty acids within the chemocline of the Cariaco Basin: A chemoautotrophic source? Org. Geochem., 41, 498-512 (2010); DOI.
- Waktola, H.D., Kulsing, C., Nolvachai, Y., Rezende, C.M., Bizzo, H.R. and Marriott, P.J. Gas chromatography-mass spectrometry of sapucainha oil (Carpotroche brasiliensis) triacylglycerols comprising straight chain and cyclic fatty acids. Anal. Bioanal. Chem., 411, 1479-1489 (2019); DOI.
- Waldchen, F., Becher, S., Esch, P., Kompauer, M. and Heiles, S. Selective phosphatidylcholine double bond fragmentation and localisation using Paterno-Buchi reactions and ultraviolet photodissociation. Analyst, 142, 4744-4755 (2017); DOI.
- Wang, H.B., Hong, J.K., Yin, J., Liu, J., Liu, Y.H., Choi, J.S. and Jung, J.H. Paecilonic acids A and B, bicyclic fatty acids from the jellyfish-derived fungus Paecilomyces variotii J08NF-1. Bioorg. Med. Chem. Letts, 26, 2220-2223 (2016); DOI.
- Wang, M., Han, R.H. and Han, X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem., 85, 9312-9320 (2013).
- Wang, W.Y., Albert, C.J. and Ford, D.A. Approaches for the analysis of chlorinated lipids. Anal. Biochem., 443, 148-152 (2013).
- Wasta, Z. and Mjos, S.A. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products. J. Chromatogr. A, 1299, 94-102 (2013).
- Watanabe, M., Miyagi,A., Nagano,M., Kawai-Yamada,M. and Imai,H. Characterization of glucosylceramides in the Polygonaceae, Rumex obtusifolius L. injurious weed. Biosci. Biotechnol. Biochem., 75, 877-881 (2011).
- Wendlinger, C. and Vetter, W. High concentrations of furan fatty acids in organic butter samples from the German market. J. Agric. Food Chem., 62, 8740-8744 (2014); DOI.
- Wendlinger, C., Hammann, S. and Vetter, W. Detailed study of furan fatty acids in total lipids and the cholesteryl ester fraction of fish liver. Food Anal. Methods, 9, 459-468 (2016); DOI.
- Wei, G.L. and Zeng,E.Y. Gas chromatography-mass spectrometry and high-performance liquid chromatography-tandem mass spectrometry in quantifying fatty acids. Trends Anal. Chem., 30, 1429-1436 (2011).
- West, R.E., Marvin, R.K., Hensley, K. and Isailovic, D. Qualitative analysis of omega-3 fatty acid oxidation by desorption electrospray ionization-mass spectrometry (DESI-MS). Int. J. Mass Spectrom., 372, 29-38 (2014); DOI.
- Williams, P.E., Klein, D.R., Greer, S.M. and Brodbelt, J.S. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J. Am. Oil Chem. Soc., 139, 15681-15690 (2017); DOI.
- Wood, P.L., Ball, B.A., Scoggin, K., Troedsson, M.H. and Squires, E.L. Lipidomics of equine amniotic fluid: Identification of amphiphilic (O-acyl)-omega-hydroxy-fatty acids. Theriogenology, 105, 120-125 (2018); DOI.
- Wood, P.L., Scoggin, K., Ball, B.A., Troedsson, M.H. and Squires, E.L. Lipidomics of equine sperm and seminal plasma: Identification of amphiphilic (O-acyl)-omega-hydroxy-fatty acids. Theriogenology, 86, 1212-1221 (2016); DOI.
- Woodcock, S.R., Bonacci, G., Gelhaus, S.L. and Schopfer, F.J. Nitrated fatty acids: synthesis and measurement. Free Rad. Biol. Med., 59, 14-26 (2013).
- Woodcock, S.R., Salvatore, S.R., Bonacci, G., Schopfer, F.J. and Freeman, B.A. Biomimetic nitration of conjugated linoleic acid: formation and characterization of naturally occurring conjugated nitrodienes. J. Org. Chem., 79, 25-33 (2014); DOI.
- Wu, Q., Comi, T.J., Li, B., Rubakhin, S.S. and Sweedler, J.V. On-tissue derivatization via electrospray deposition for matrix assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal. Chem., 88, 5988-5995 (2016); DOI.
- Xia, W. and Budge, S.M. Techniques for the analysis of minor lipid oxidation products derived from triacylglycerols: epoxides, alcohols, and ketones. Comp. Rev. Food Sci. Food Safety, 16, 735-756 (2017); DOI.
- Xia, W. and Budge, S.M. GC-MS characterization of hydroxy fatty acids generated from lipid oxidation in vegetable oils. Eur. J. Lipid Sci. Technol., 120, 1700313 (2018); DOI.
- Xia, W. and Budge, S.M. Simultaneous quantification of epoxy and hydroxy fatty acids as oxidation products of triacylglycerols in edible oils. J. Chromatogr. A, 1537, 83-90 (2018); DOI.
- Xie, X.B. and Xia, Y. Analysis of conjugated fatty acid isomers by the Paterno-Buchi reaction and trapped ion mobility mass spectrometry. Anal. Chem., 91, 7173-7180 (2019); DOI.
- Xu, Y.-J. and Zhang, J. Determination of fatty acid methyl esters by GC-triple quadrupole MS using electron and chemical ionization. Bioanalysis, 5, 1527-1543 (2013); DOI.
- Yamada, H., Yamazaki, Y., Koike, S., Hakozaki, M., Nagahora, N., Yuki, S., Yano, A., Tsurumi, K. and Okumura, T. Lipids, fatty acids and hydroxy-fatty acids of Euphausia pacifica. Sci. Rep., 7, 9944 (2017); DOI.
- Yang, K., Dilthey, B.G. and Gross, R.W. Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal. Chem., 85, 9742-9750 (2013).
- Yang, Y., Shi, F., Tao, G.J. and Wang, X.Y Purification and structure analysis of mycolic acids in Corynebacterium glutamicum. J. Microbiol., 50, 235-240 (2012).
- Yoo, H.J. and Hakansson,K. Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation. Anal. Chem., 82, 6940-6946 (2010).
- Yu, X.W., Xiong, C., Jensen, K.B., Glabonjat, R.A., Stiboller, M., Raber, G. and Francesconi, K.A. Mono-acyl arsenosugar phospholipids in the edible brown alga Kombu (Saccharina japonica). Food Chem., 240, 817-821 (2018); DOI.
- Zabeti, N., Bonin,P., Volkman,J.K., Guasco,S. and Rontan,J.-F. Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org. Geochem., 41, 627-636 (2010).
- Zeng, A.X., Chin, S.T., Nolvachai, Y., Kulsing, C., Sidisky, L.M. and Marriott, P.J. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters. Anal. Chim. Acta, 803, 166-173 (2013).
- Zeng, A.X., Chin, S.T., Patti, A. and Marriott, P.J. Profiling of soil fatty acids using comprehensive two-dimensional gas chromatography with mass spectrometry detection. J. Chromatogr. A, 1317, 239-245 (2013).
- Zhang, J.I., Tao,W.A. and Cooks,R.G. Facile determination of double bond position in unsaturated fatty acids and esters by low temperature plasma ionization mass spectrometry. Anal. Chem., 83, 4738-4744 (2011).
- Zhang, L.X., Yun,Y.F., Liang,Y.Z. and Cao,D.S. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J. Chromatogr. A, 1217, 3695-3701 (2010).
- Zhang, S., Liu,J.A., Chen,Y., Xiong,S.X., Wang,G.H., Chen,J. and Yang,G.Q. A novel strategy for MALDI-TOF MS analysis of small molecules. J. Am. Soc. Mass Spectrom., 21, 154-160 (2010).
- Zhang, Y., Qiu, L., Wang, Y., Qin, X. and Li, Z. High-throughput and high-sensitivity quantitative analysis of serum unsaturated fatty acids by chip-based nanoelectrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry: Early stage diagnostic biomarkers of pancreatic cancer. Analyst, 139, 1697-1706 (2014); DOI.
- Zhao, Y.Y., Zhao, H.S., Zhao, X., Jia, J., Ma, Q., Zhang, S.C., Zhang, X.R., Chiba, H., Hui, S.P. and Ma, X.X. Identification and quantitation of C=C location isomers of unsaturated fatty acids by epoxidation reaction and tandem mass spectrometry. Anal. Chem., 89, 10270-10278 (2017); DOI.
- Zhou, Y., Park, H., Kim, P., Jiang, Y. and Costello, C.E. Surface oxidation under ambient air-not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing. Anal. Chem., 86, 5697-5705 (2014); DOI.
- Zhu, Q.F., Yan, J.W., Gao, Y., Zhang, J.W., Yuan, B.F. and Feng, Y.Q. Highly sensitive determination of fatty acid esters of hydroxyl fatty acids by liquid chromatography-mass spectrometry. J. Chromatogr. B, 1061, 34-40 (2017); DOI.
© References compiled by: William W. Christie | ||
Updated: November 8th, 2023 | Contact/credits/disclaimer |