Glycerolipid MS/MS Prediction

Match MS/MS peaklist to a database of precursor/product ions

(Commonly occurring chain substituents used to generate the database are listed at the bottom of the page. One should be aware that other alternative glycerolipid structures not included in the database may also match the user m/z input)

Enter peaklist in PKL format:
Space-delimited [Precursor ion, intensity, charge-state] in 1st row and [Product ion, intensity] in subsequent rows

Search Parameters (negative ion mode)

Intensity Threshold
Precursor ion mass tolerance (+/- m/z)
Product ion mass tolerance (+/- m/z)
Class (MG,DG,TG)
Ion type
Minimum number of ion matches
Limit chains:

Peaklist in PKL format:

Information sources:

Glycerolipid tandem mass spectra displayed in LIPID MAPS Standards Library

Analysis of triacylglycerols with non-aqueous reversed-phase liquid chromatography and positive ion electrospray tandem mass spectrometry
E. Hvattum
Rapid Commun. Mass Spectrom., 15 (2001), 187-190.

Direct qualitative analysis of triacylglycerols by electrospray mass spectrometry using a linear ion trap
A.M. McAnoy, C.C. Wu, R.C. Murphy
J. Am. Soc. Mass Spectrom., 16 (2005), 1498-1509.

Detection of the abundance of diacylglycerol and triacylglycerol molecular species in cells using neutral loss mass spectrometry
R.C. Murphy, P.F. James, A.M. McAnoy, J. Krank, E.Duchoslav, R.M. Barkley
Analytical Biochemistry 366(1), (2007), 59-70

Qualitative analysis and quantitative assessment of changes in neutral glycerol lipid molecular species within cells.
J. Krank, R.C. Murphy, R.M Barkley, E. Duchoslav, A. McAnoy
Methods in Enzymology (2007) 432(7), Academic Press, pp 1-20.

Algorithm for Processing Raw Mass Spectrometric Data to Identify and Quantitate
Complex Lipid Molecular Species in Mixtures by Data-Dependent Scanning and Fragment Ion Database Searching
Haowei Song, Fong-Fu Hsu, Jack Ladenson, and John Turk
J Am Soc Mass Spectrom. 18(10) (2007), 1848-1858.

Parameters used to construct the database

sn1 chain
2:0
4:0
6:0
8:0
10:0
12:0
13:0
14:0
14:1(9Z)
15:0
15:1(9Z)
O-16:0
P-16:0
P-16:1(9Z)
16:0
16:1(9Z)
17:0
17:1(9Z)
17:2(9Z,12Z)
O-18:0
P-18:0
P-18:1(9Z)
18:0
18:1(11E)
18:1(9Z)
18:2(9Z,12Z)
18:3(6Z,9Z,12Z)
18:3(9Z,12Z,15Z)
18:4(6Z,9Z,12Z,15Z)
19:0
O-20:0
P-20:0
P-20:1(11Z)
20:0
20:1(11Z)
20:2(11Z,14Z)
20:3(8Z,11Z,14Z)
20:4(5Z,8Z,11Z,14Z)
20:5(5Z,8Z,11Z,14Z,17Z)
21:0
22:0
22:1(11Z)
22:2(13Z,16Z)
22:3(10Z,13Z,16Z)
22:4(7Z,10Z,13Z,16Z)
22:5(7Z,10Z,13Z,16Z,19Z)
22:6(4Z,7Z,10Z,13Z,16Z,19Z)
23:0
24:0
24:1(15Z)
25:0
26:0

sn2 and sn3 chains
0:0
2:0
4:0
6:0
8:0
10:0
12:0
13:0
14:0
14:1(9Z)
15:0
15:1(9Z)
16:0
16:1(9Z)
17:0
17:1(9Z)
17:2(9Z,12Z)
18:0
18:1(11E)
18:1(9Z)
18:2(9Z,12Z)
18:3(6Z,9Z,12Z)
18:3(9Z,12Z,15Z)
18:4(6Z,9Z,12Z,15Z)
19:0
20:0
20:1(11Z)
20:2(11Z,14Z)
20:3(8Z,11Z,14Z)
20:4(5Z,8Z,11Z,14Z)
20:5(5Z,8Z,11Z,14Z,17Z)
21:0
22:0
22:1(11Z)
22:2(13Z,16Z)
22:3(10Z,13Z,16Z)
22:4(7Z,10Z,13Z,16Z)
22:5(7Z,10Z,13Z,16Z,19Z)
22:6(4Z,7Z,10Z,13Z,16Z,19Z)
23:0
24:0
24:1(15Z)
25:0
26:0

Micromass (PKL) format
The PKL format is similar to the DTA file format, but supports multiple MS/MS datasets in a single file. The first line of a PKL dataset contains the observed m/z, intensity, and charge state of the precursor ion as a triplet of space separated values. Subsequent lines contain space separated pairs of fragment ion m/z and intensity values.