Glycerophospholipid MS/MS Prediction
Match MS/MS peaklist to a database of precursor/product ions
(Commonly occurring headgroups and chain substituents used to generate the database are listed at the bottom of the page. One should be aware that other alternative glycerophospholipid structures not included in the database may also match the user m/z input)
Enter peaklist in PKL format:
Space-delimited [Precursor ion, intensity, charge-state] in 1st row and [Product ion, intensity] in subsequent rows
Information sources:
Glycerophospholipid tandem mass spectra displayed in LIPID MAPS Standards Library Glycerophospholipid Identification and Quantitation by Electrospray Ionization Mass Spectrometry Pavlina T. Ivanova, Stephen B. Milne, Mark O. Byrne, Yun Xiang, and H. Alex Brown. Methods in Enzymology, (Academic Press) 432 21-57 (2007). Electrospray mass spectrometry of phospholipids Melissa Pulfer and Robert C. Murphy Mass Spectrom. Rev. 22, 332-364 (2003). Characterization of phosphatidylinositol, phosphatidylinositol- 4-phosphate, and phosphatidylinositol-4, 5-bisphosphate by electrospray ionization tandem mass spectrometry: A mechanistic study. Fong-Fu Hsu and John Turk J. Am. Soc. Mass Spectrom. 11, 986-999 (2000). Algorithm for Processing Raw Mass Spectrometric Data to Identify and QuantitateComplex Lipid Molecular Species in Mixtures by Data-Dependent Scanning and Fragment Ion Database Searching
Haowei Song, Fong-Fu Hsu, Jack Ladenson, and John Turk
J Am Soc Mass Spectrom. 18(10) 1848-1858 (2007).
Parameters used to construct the database
Headgroups PC PA PE PS PI PG sn1 chain 2:0 4:0 6:0 8:0 10:0 12:0 13:0 14:0 14:1(9Z) 15:0 15:1(9Z) O-16:0 P-16:0 P-16:1(9Z) 16:0 16:1(9Z) 17:0 17:1(9Z) 17:2(9Z,12Z) O-18:0 P-18:0 P-18:1(9Z) 18:0 18:1(11E) 18:1(9Z) 18:2(9Z,12Z) 18:3(6Z,9Z,12Z) 18:3(9Z,12Z,15Z) 18:4(6Z,9Z,12Z,15Z) 19:0 O-20:0 P-20:0 P-20:1(11Z) 20:0 20:1(11Z) 20:2(11Z,14Z) 20:3(8Z,11Z,14Z) 20:4(5Z,8Z,11Z,14Z) 20:5(5Z,8Z,11Z,14Z,17Z) 21:0 22:0 22:1(11Z) 22:2(13Z,16Z) 22:3(10Z,13Z,16Z) 22:4(7Z,10Z,13Z,16Z) 22:5(7Z,10Z,13Z,16Z,19Z) 22:6(4Z,7Z,10Z,13Z,16Z,19Z) 23:0 24:0 24:1(15Z) 25:0 26:0 sn2 chain 0:0 2:0 4:0 6:0 8:0 10:0 12:0 13:0 14:0 14:1(9Z) 15:0 15:1(9Z) 16:0 16:1(9Z) 17:0 17:1(9Z) 17:2(9Z,12Z) 18:0 18:1(11E) 18:1(9Z) 18:2(9Z,12Z) 18:3(6Z,9Z,12Z) 18:3(9Z,12Z,15Z) 18:4(6Z,9Z,12Z,15Z) 19:0 20:0 20:1(11Z) 20:2(11Z,14Z) 20:3(8Z,11Z,14Z) 20:4(5Z,8Z,11Z,14Z) 20:5(5Z,8Z,11Z,14Z,17Z) 21:0 22:0 22:1(11Z) 22:2(13Z,16Z) 22:3(10Z,13Z,16Z) 22:4(7Z,10Z,13Z,16Z) 22:5(7Z,10Z,13Z,16Z,19Z) 22:6(4Z,7Z,10Z,13Z,16Z,19Z) 23:0 24:0 24:1(15Z) 25:0 26:0 Micromass (PKL) format The PKL format is similar to the DTA file format, but supports multiple MS/MS datasets in a single file. The first line of a PKL dataset contains the observed m/z, intensity, and charge state of the precursor ion as a triplet of space separated values. Subsequent lines contain space separated pairs of fragment ion m/z and intensity values.